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ABSTRACT

Traditional morphology- and molecular-based biodiversity surveys provide essential information on species composition and
diversity, but they rarely provide information about the physiological states of organisms, which are key indicators of ecosystem
health. Environmental RNA (eRNA) has the potential to significantly enhance biomonitoring by providing insights beyond spe-
cies detection. Recent studies suggest that extra-organismal RNA released into the environment could help identify differentially
expressed genes of single species. However, the feasibility of eERNA-based metatranscriptomics on complex environmental sam-
ples, containing both extra-organismal and organismal eukaryotic RNA, remains untested due to numerous experimental and
analytical challenges. In this study, we explored the potential of eRNA-based metatranscriptomics, enriched for eukaryotes, as a
tool to monitor environmental stress. We used outdoor mesocosms to examine the acute effects of a glyphosate-based herbicide
(GBH) on gene transcription across diverse freshwater eukaryotic taxa. Our metatranscriptomics data revealed diverse eukary-
otic taxa spanning multiple trophic levels, including phytoplankton, zooplankton, ciliates, and aquatic insects. GBH treatment
significantly altered the relative transcript abundances of most eukaryotic classes, with longer-lived taxa demonstrating greater
tolerance compared to shorter-lived taxa. Differential expression analysis showed more gene downregulation than upregulation
in response to GBH, likely due to its acute toxicity. Many differentially expressed genes were involved in molecular pathways
associated with responses to GBH exposure, such as oxidative stress response and detoxification. Our results demonstrate that
eRNA-based metatranscriptomics captures transcriptional signals from diverse aquatic eukaryotic taxa, providing insights into
functional gene expression. As such, its application to support environmental monitoring of aquatic ecosystems warrants further
exploration.
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1 | Introduction

Molecular methods of species identification using DNA collected
either directly from organisms (organismal DNA) or indirectly
from their environment (environmental DNA) have revolution-
ised biodiversity surveys, offering high-throughput, cost- and
time-efficient approaches that provide valuable biological data
for environmental biomonitoring (Cristescu and Hebert 2018;
Ficetola et al. 2008; Hebert et al. 2003; Pawlowski et al. 2014).
Recent advances in environmental RNA (eRNA) may signifi-
cantly enhance environmental assessments by providing addi-
tional information beyond species detection (Cristescu 2019).
Similar to environmental DNA (eDNA), eRNA metabarcoding
can be used to detect species and characterise community com-
position (Littlefair et al. 2022; Miyata et al. 2022). As RNA de-
grades faster than DNA, it has been suggested that eRNA may
better reflect the real-time status of species presence and com-
munity composition (Kagzi et al. 2022; Yates et al. 2021), thereby
improving spatio-temporal resolution, particularly in heteroge-
nous environments with rapid species turnover. Most impor-
tantly, eRNA has the potential to measure expression levels of
functional genes, providing additional ecological and physiolog-
ical information (Cristescu 2019).

Gene expression profiling using organismal RNA (0RNA) has
been employed to assess the health status and stress levels of
organisms (Akbarzadeh et al. 2018; Logan and Somero 2011;
Ramaswamy et al. 2001), as the regulation of gene expression is
a fundamental strategy for organisms to adapt to environmental
changes and cope with stress (Schulte 2004). Therefore, analyz-
ing gene expression using eRNA may also provide insights into
the physiological status of organisms in complex communities.
Recent transcriptomic analyses based on extra-organismal RNA
have been used to detect the responses to heat stress in the water
flea Daphnia pulex (Hechler et al. 2025) and to pyrene expo-
sure in the Japanese rice fish Oryzias latipes (Hiki et al. 2023).
Although extra-organismal RNA covered only a small portion
of genes when compared to the full repertoire of genes derived
from oRNA, these single-species studies found that extra-
organismal RNA detected differentially expressed genes in
response to stress. In the fish and Daphnia studies, 14.0% and
53.1% of the genes identified as differentially expressed in the
eRNA data were also found to be differentially expressed in the
oRNA data, respectively. Although these pioneering studies are
promising, it remains to be tested whether eRNA can be used to
detect transcriptomic responses of complex eukaryotic commu-
nities to environmental stress.

Traditionally, environmental metatranscriptomics studies
have focused on bulk samples of prokaryotic organisms or spe-
cific eukaryotic taxonomic groups (e.g., Carradec et al. 2018;
Knapik et al. 2020; Mojib et al. 2017), with the extracted RNA
originating mainly from living organisms. However, when fo-
cusing on complex eukaryotic communities containing both
macro- and micro-eukaryotes, a typical water sample includes
extra-organismal RNA as well as oRNA. Thus, in this study,
we define eRNA as the RNA extracted from environmen-
tal samples, consisting of a mixture of extra-organismal RNA
primarily derived from macro-eukaryotes and oRNA mainly
derived from whole micro-eukaryotes (adapted from Hechler
et al. 2025). Recovering taxonomic and functional information

of eukaryotes based on environmental metatranscriptomics
presents inherent challenges. The eukaryotic community is
highly diverse both taxonomically and ecologically, and captur-
ing such diversity requires a substantial number of sequences
per sample. Moreover, most eukaryotes lack a reference genome,
and public databases have insufficient nucleotide and amino
acid sequences for eukaryotic genes (Lewin et al. 2018; Shakya
et al. 2019). This shortage impacts the accuracy of taxonomic
and functional annotation of RNA-Seq reads. There are also
concerns related to the quantity and quality of eRNA (particu-
larly of extra-organismal origin) when it comes to library prepa-
ration (Hiki et al. 2023). Lastly, differential expression analysis
is more challenging than single-species studies because it is
difficult to determine if changes in expression levels are due to
gene expression regulation or differences in species composition
among sample groups (Klingenberg and Meinicke 2017; Zhang
et al. 2021). Despite these challenges, the potential advantages
of eRNA-based metatranscriptomics include non-invasive sam-
pling and the ability to capture a broader range of eukaryotic
groups than bulk samples. In addition, the continual growth
of reference genomes makes eRNA-based metatranscriptomics
an attractive choice for monitoring environmental changes and
stress.

Here we investigate how metatranscriptomics based on eRNA
can be applied beyond species detection to assess the physiolog-
ical status of complex eukaryotic communities under environ-
mental stress. As a case study, we examined the acute effects
of a glyphosate-based herbicide (GBH) on gene transcription in
diverse freshwater eukaryotic taxa using outdoor mesocosms.
The widespread use of GBHs in agriculture has led to contam-
ination of aquatic environments, directly causing mortality in
many species (Gongalves et al. 2019; Rico-Martinez et al. 2012)
and reducing species richness in plankton communities (Fugeére
et al. 2020; Hébert et al. 2021). Using an eRNA-based meta-
transcriptomics approach enriched for eukaryotes, we exposed
complex freshwater communities to a GBH for 24 h and assessed
changes in gene transcription of major eukaryotic groups. Given
that GBH exposure may alter the transcriptional activity of sen-
sitive taxa, our first objective was to compare the relative tran-
script abundance of eukaryotic taxa before and after treatment.
The second objective was to analyze the effects of GBH on gene
transcription in major eukaryotic taxonomic groups. We pre-
dicted that GBH would trigger gene transcription responses,
reflecting the toxic impacts of GBH and the responses of organ-
isms to mitigate the damage. Given that GBH has been reported
to cause oxidative stress via reactive oxygen species production
in various organisms, including algae, invertebrates, and ver-
tebrates (Klatyik et al. 2024; Modesto and Martinez 2010), we
predicted that many differentially expressed genes would be in-
volved in oxidative stress response pathways.

2 | Materials and Methods

2.1 | Experimental Design and Sample Collection
The GBH treatment experiment was conducted at the Large
Experimental Array of Ponds (LEAP) facility, located within a

1000-ha protected forest at Gault Nature Reserve (Mont-Saint-
Hilaire, Quebec, Canada). Four pond mesocosms (approximately
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1000L each) were set up and filled with water from a reservoir
connected to Lac Hertel (45°32’N, 73°09'W) between June 13
and 17, 2022. Lac Hertel is considered free of herbicide pollution
due to its location within a protected forested watershed with
no history of agricultural activity (Fugére et al. 2020). The me-
socosms were left undisturbed for approximately six weeks to
allow the communities to stabilize before the GBH treatment.
Control samples were collected from the four ponds on July 26,
2022. Subsequently, 57.2mL of Roundup Super Concentrate
Grass and Weed Control (reg. no. 22759; Bayer) was added to
each pond to target a total glyphosate concentration of 15mg/L,
assuming a pond volume of 1000 L. We selected a targeted con-
centration of 15mg/L for our acute effect experiment based on
previous studies that found strong responses of phytoplank-
ton and zooplankton to this dose of GBH at the same facility
(Fugere et al. 2020; Hébert et al. 2021). This concentration
falls between the Canadian freshwater quality guidelines for
long-term (0.8 mg/L) and short-term (27 mg/L) exposure limits
(CCME 2012). Treatment samples were collected approximately
24h after the GBH exposure from the same four ponds on July
27, 2022. However, we cannot attribute these effects solely to
glyphosate, as the commercial GBH formulation used contains
other toxic ingredients in addition to glyphosate (Mesnage and
Antoniou 2017).

Water samples were collected from the upper 35cm at multiple
locations within each mesocosm using dedicated PVC tubes
(one tube per pond). Two water samples (500 mL each) were fil-
tered through 0.7 wm glass microfiber filters (Millipore) for each
pond on each sampling day. Filters were placed in 1.5mL micro-
centrifuge tubes containing 375uL of RLT buffer (Qiagen) and
-mercaptoethanol (Sigma-Aldrich), mixed at a volume ratio of
100:1. To prevent eRNA degradation, water filtration was com-
pleted on site within 30 min from collection. Samples were im-
mediately placed on dry ice and then stored at —80°C until RNA
extraction. A filtration blank was included on each sampling
day by filtering 500 mL of distilled water using the same method
as for the eRNA samples. In total, 16 eRNA samples and two
filtration blanks were collected. Samples were identified using
the format Pond_Treatment&ReplicateID. For example, sample
“A_C1” refers to Replicate 1 from the Control group in Pond A.

2.2 | RNA Extraction and RNA-Seq Library
Preparation

RNA extraction, DNase treatment, and library preparation were
conducted in a clean laboratory dedicated to environmental nu-
cleic acid research. Environmental RNA was extracted from the
filters using the RNeasy Mini Kit (Qiagen) and ZR BashingBead
Lysis Tubes (0.1 and 0.5mm) (Zymo Research). Samples were
thawed on ice. Each ZR BashingBead lysis tube was wetted
with 200 uL of RLT buffer (with f-mercaptoethanol). Each filter
and its preservation buffer were then transferred into one lysis
tube, followed by the addition of another 175uL of RLT buffer
(with B-mercaptoethanol). Samples were homogenised using a
TissueLyser (Qiagen), then centrifuged at 13,000 rpm for 3 min.
The liquid from each sample was transferred to a new 1.5mL
microcentrifuge tube and centrifuged again at 13,000rpm
for 3min. The supernatants were carefully transferred to new
1.5mL tubes. Subsequent steps followed the Qiagen RNeasy

Mini Kit Handbook. One RNA extraction blank was included
for each batch of RNA extraction. In total, RNA was extracted
from 20 samples: 16 eRNA samples, two filtration blanks, and
two extraction blanks.

RNA was quantified using a Qubit RNA High Sensitivity kit,
and RNA quality was checked using an Agilent RNA 6000 Pico
Kit (Agilent). There was no detectable RNA in the filtration
and extraction blanks, as indicated by the Qubit results and the
absence of bands in the gel image results from the BioAnalyzer.
Therefore, RNA extracted from filtration and extraction blanks
was not used for library preparation. Total RNA was subject
to DNase digestion for 30min using a Turbo DNA-free Kit
(Thermo Fisher) prior to library preparation. Sixteen RNA-Seq
libraries were prepared from eRNA samples, and one library
preparation negative control was prepared using molecular-
grade water, with the Illumina Stranded mRNA Prep kits and
IDT for Illumina RNA UD Indexes Set B (Illumina). During
library preparation, mRNA with poly(A) tails was enriched
using oligo(dT) magnetic beads according to the Illumina pro-
tocol. Libraries were sent to the McGill Genome Centre for
quality checking, quantification, and sequencing using the
Illumina NovaSeq 6000 S4 platform with paired-end 150bp
reads. One eRNA sample from the treatment group failed
during library preparation.

2.3 | De Novo Transcriptome Assembly
and Annotation

The data analysis workflow involved bioinformatic analysis and
post-bioinformatic analysis, each step of which is summarised
in Figure 1. Raw sequences were processed using Trimmomatic
0.36 to remove low-quality reads and Illumina adapters (Bolger
et al. 2014). Ribosomal RNA (rRNA) sequences were discarded
using SortMeRNA v4.3.6 (Kopylova et al. 2012), which aligned
our sequences with several rRNA genes (i.e., 5S rRNA, 5.8S
rRNA, 16S rRNA, 18S rRNA, 23S rRNA, and 28S rRNA) from
the SILVA and Rfam databases (Griffiths-Jones et al. 2003;
Quast et al. 2013) included in the SortMeRNA v4 default data-
base. rRNA-depleted reads were assembled into contigs using
MEGAHIT (Li et al. 2016). Then, rRNA-depleted reads were
mapped to the assembled contigs using Bowtie2 (Langmead
and Salzberg 2012), and abundances for each contig in each
sample were estimated using SAMtools (Li et al. 2009). A count
matrix for each contig in each sample was generated using the
get_count_table.py  (https://github.com/metajinomics/mappi
ng_tools).

Taxonomy of the contigs was annotated following the
DIAMOND+MEGAN pipeline for long reads (Bagci et al. 2021).
The contig sequences were split into three files using SeqKit
(Shen et al. 2016) and subsequently aligned against the NCBI nr
database (database downloaded on January 25, 2024) (Benson
et al. 2005) using DIAMOND v2.1.7 with the sensitive mode,
frameshift-aware alignment mode, and range culling report-
ing mode (Buchfink et al. 2021). The output DAA files were
processed using the daa-meganizer tool of MEGAN v6.25.9 in
long-read mode, applying the interval-union lowest common
ancestor algorithm for taxonomic analysis of contigs (setting
for daa-meganizer: --longReads -me 0.00001 -mpi 40) (Huson
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FIGURE1 | Flowchart illustrating the general bioinformatic and post-bioinformatic analysis workflow used in this study.

et al. 2016, 2018). The meganized DAA files were imported
into the graphical user interface of MEGAN to export the tax-
onomic assignment results of the contigs. Based on the taxon-
omy assignment results at the domain level, contigs that were
not assigned to Eukaryota were discarded and a count table for
eukaryotic contigs was generated using the filter-table plugin
of QIIME2 (Bolyen et al. 2019). Functional annotation of the
contigs was performed using the eggNOG-mapper v2.1.12 with
the eggNOG v5.0.2 database (Cantalapiedra et al. 2021; Huerta-
Cepas et al. 2019).

2.4 | Analyses of Class-Level Transcript Profiles

The eukaryotic contig count table was collapsed at the class level
based on taxonomic assignment results from MEGAN. Contigs
that were assigned to Eukaryota and could not be assigned at the
class level were categorised as “Unassigned_Eukaryota” and re-
tained in the table. To confirm that the major taxonomic classes
we detected were indeed present in the ecosystem, we employed
two approaches: cross-referencing classes reported in previous
studies that used freshwater communities derived from the
same source lake (Fugére et al. 2020; Hébert et al. 2021; Loria
et al. 2025) and confirming the widespread occurrence of these
classes in freshwater ecosystems (Table S1). The class count
table, which contained the number of reads assigned to each
class in each sample, was rarified to 600,000 reads per sample
using QIIME2 (Bolyen et al. 2019). Bray-Curtis dissimilarities

were estimated using the rarified table, and Principal Coordinate
Analysis (PCoA) was performed on the resulting dissimilarity
matrix.

The relative transcript abundance of each eukaryotic class
in each sample was calculated based on the number of reads
assigned to each class relative to the total number of reads
assigned to Eukaryota in that sample. These values reflect
relative transcriptional contributions rather than organismal
abundances. We compared the relative transcript abundances
between control and treatment for nine classes with the great-
est number of reads across the samples: three classes of zoo-
plankton (Branchiopoda, Eurotatoria, and Hexanauplia), two
of phytoplankton (Dinophyceae and Cryptophyceae), two of
ciliates (Oligohymenophorea and Spirotrichea), and two addi-
tional classes (Insecta and Magnoliopsida). For the nine major
classes, differences in the relative transcript abundances be-
tween treatment and control were initially analysed using lin-
ear mixed effects models (LMM) with the ImerTest package
(Kuznetsova et al. 2017): the herbicide treatment (before vs.
after GBH application) was set as a fixed effect and pond was
set as a random effect for each model. Q-Q plots indicated that
the residuals of the models for Branchiopoda, Dinophyceae, and
Oligohymenophorea followed a normal distribution, while the
residuals for the other six classes did not. Consequently, we re-
analysed the differences in relative transcript abundances be-
tween treatment and control for these six classes using robust
linear mixed effects models ({fLMM) with the robustlmm R
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package (Koller 2016), as r(LMM are less sensitive to deviations
from normality. In the rLMM analyses, 95% confidence inter-
vals (CIs) for the effects of the treatment were estimated using
the confintROB R package (Mason et al. 2024), and p values to
determine the significance of the fixed factor effects were cal-
culated following the method outlined in Geniole et al. (2019).

2.5 | Differentially Expressed Gene Analysis

Based on the taxonomy assignment results of the contigs at
the class level, a contig count table for each of the nine major
classes was generated by extracting the relevant data from the
eukaryotic contig count table. We followed the recommen-
dation of Klingenberg and Meinicke (2017) to normalise gene
expression data using DESeq2 (Love et al. 2014) for each class
separately and recombine the normalised data into a count ma-
trix to analyse differentially expressed genes. Low-count genes
were pre-filtered, and only contigs with at least 10 normalised
counts in at least four samples were included in the differential
gene expression analysis. For statistical analyses, a variance-
stabilising transformation was performed on the counts of each
contig using DESeq2 (Love et al. 2014), followed by LMM analy-
ses on the transformed counts with ImerSeq (Vestal et al. 2022).
In the LMM analyses, treatment was set as a fixed effect
and pond was set as a random effect. p values were adjusted
using the Benjamini-Hochberg (BH) method (Benjamini and
Hochberg 1995). KEGG Orthology (KO) enrichment analysis
for differentially expressed genes were performed using the en-
richer function of the clusterProfiler R package (Yu et al. 2012).
The contigs that passed the filtration criteria for differential ex-
pression analysis were used as background.

3 | Results

3.1 | Summary of Sequencing and Taxonomy
Composition

In total, 3.4 billion reads (i.e., 1.7 billion paired-end reads) were
generated for the 16 libraries (15 eRNA samples and one library
preparation negative control) (Table S2). After denoising and re-
moving rRNA reads, the reads were assembled into 1,726,846
contigs with 2.5 billion reads mapped to those contigs. Among
them, 1.6 billion (64.0%) reads were taxonomically assigned to
a domain, while 0.9 billion (36.0%) were not. The average per-
centage of reads assigned to Eukaryota, Archaea, and Bacteria
across the eRNA samples was 94.9% (105,617,564 reads), 1.5%
(1,918,501 reads), and 3.6% (2,370,320 reads), respectively, with
similar patterns in each sample (Figure S1). In contrast, the
corresponding percentages in the library negative control were
13.2% (2039 reads), 0.01% (2 reads), and 86.8% (13,410 reads),
respectively. Given that the number of eukaryotic reads in the
library negative control sample was 2039, which is very small
compared to the average of 105.6 million eukaryotic reads in the
eRNA samples (Table S2), this sample was removed from down-
stream analysis.

Of the eukaryotic reads, the average percentage assigned at the
class level across the 15 eRNA samples was 74.4% (Figure 2A).
The most transcriptionally represented class was Dinophyceae,

with an average percentage of 20.1%. The second and third most
represented classes were Branchiopoda and Insecta, with aver-
age percentages of 14.2% and 13.1%, respectively. Spirotrichea
and Eurotatoria also had substantial representation, averag-
ing 6.3% and 6.2%, respectively. The predominantly terrestrial
groups, Magnoliopsida and Mammalia, accounted for average
proportions of 1.2% and 0.2%, respectively, and both were con-
sidered unexpected taxa. Magnoliopsida reads may originate
from airborne plant material, such as pollen, while Mammalia
reads could be attributed to the presence of mammals living
around the area.

In general, replicates collected from each pond at the same
sampling time showed similar class level transcript profiles
(Figure 2A). Statistical analyses showed that eight of the nine
analysed classes had significantly different relative transcript
abundances between treatment and control, with Branchiopoda
and Insecta having higher relative transcript abundances in the
treatment, and the other six classes having higher relative tran-
script abundances in the control (Figure 2B and Table S3). The
relative transcript abundance of Magnoliopsida was not signifi-
cantly different between treatment and control. PCoA revealed
that GBH treatment influenced the transcriptional profiles of
eukaryotic communities. Specifically, PCol captures the impact
of the treatment, whereas PCo2 captures pond-specific differ-
ences (Figure 3A).

3.2 | Differential Expression Analysis

The sample distance heatmap based on all gene expression
data revealed two major clusters: one for control samples and
the other for treatment samples, with replicates from each tank
clustering together within their respective groups (Figure 3B).
In total, LMM analyses showed there were 61,957 contigs that
exhibited significantly different expression between treatment
and control: expression of 59,554 contigs showed downregula-
tion in response to the GBH treatment, and 2403 contigs showed
upregulation. Taxonomic annotation of these contigs allowed
us to identify how many were differentially expressed within
each class, and the numbers revealed a pattern of more down-
regulation than upregulation in every analysed class (Table 1).
Those differentially expressed contigs encode genes involved in
diverse molecular pathways (Figure 4 and Figure S2). KEGG
ortholog enrichment analysis identified 48 enriched terms
(Table S4), representing key biological pathways. For instance,
the enriched KO term K08914 (light-harvesting complex II chlo-
rophyll a/b binding protein 3) is associated with photosynthesis,
while the enriched KO term K03661 (V-type H*—transporting
ATPase 21kDa proteolipid subunit) is associated with oxidative
phosphorylation.

To interpret the biological significance of differential gene
expression, we examined differentially expressed contigs
annotated to KEGG pathways potentially affected by GBH
treatment and visualised their expression patterns using heat-
maps (Figure 5 and Figure S3). To investigate oxidative stress
responses, we identified 463 differentially expressed contigs an-
notated to glutathione metabolism (ko00480), 1513 to oxidative
phosphorylation (ko00190), and 610 to peroxisome (ko04146).
For detoxification, 263 differentially expressed contigs were
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Eukaryota” represents the reads assigned to Eukaryota but not to the class level. (B) Comparison of relative transcript abundances between treat-
ment and control for nine major classes. Asterisks (‘**’) indicate significant differences revealed by either LMM or rLMM, while “NS” denotes non-
significant difference.
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analysis (PCoA) of Bray-Curtis dissimilarity based on transcript read counts assigned to eukaryotic classes (rarified to 600,000 reads per sample).

(B) Heatmap of sample-to-sample distances based on gene expression data. Distances were calculated using eukaryotic contigs with at least 10 reads

in at least four samples, and hierarchical clustering was performed on the sample distances.

annotated to the metabolism of xenobiotics by cytochrome P450
(ko00980) molecular pathway. To examine potential impacts on
photosynthesis, we identified 649 differentially expressed con-
tigs annotated to the photosynthesis (ko00195) pathway and 228
to the photosynthesis-antenna proteins (ko00196) pathway in the

two phytoplankton classes (Cryptophyceae and Dinophyceae).
The heatmap of downregulated contigs associated with oxida-
tive stress response (Figure 5A) reveals that treatment samples
clustered together on the right and then grouped with control
samples on the left, suggesting a consistent transcriptional
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30.20
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0.24
8.49

Up (no.)
710
16
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1701

Total DE

76,242
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No. of contigs
For LMM?

Total
206,568
10,466
39,377
46,833
21,396
48,060
19,689
34,675
6305

No. of reads
348,099,868
55,057,730
108,145,935
114,837,167
25,975,365
310,927,755
13,964,387
107,843,917
16,630,772

Class
Dinophyceae
Cryptophyceae
Branchiopoda
Eurotatoria
Hexanauplia
Insecta
Spirotrichea
Magnoliopsida

| Numbers of reads, contigs and differentially expressed (DE) contigs in the major classes.
Oligohymenophorea

Category
Phytoplankton
Zooplankton
Insect

Ciliate

Plant

20nly contigs with at least 10 counts in at least four samples after normalization were included in the differential expression analysis. A contig count table consisting of data from the nine classes was used for the analysis, after

which the numbers of differentially expressed contigs in each class were summarized based on the taxonomic annotation of the contigs.

TABLE 1

suppression in response to GBH exposure across treatment
samples. In contrast, the heatmap of upregulated contigs associ-
ated with oxidative stress response (Figure 5B) shows that con-
trol samples clustered in the center, with treatment samples on
both sides, indicating more variable upregulation among treat-
ment samples. The heatmaps of detoxification-related contigs
(Figure 5C,D) exhibited patterns similar to those observed for
oxidative stress response contigs in Figure 5A,B. In comparison,
the heatmap of contigs associated with photosynthesis-related
pathways (Figure S3) displayed less consistent clustering pat-
terns between treatment and control groups, suggesting more
heterogeneous transcriptional responses across samples.

To further investigate the genes associated with these KEGG
pathways, we examined patterns at the KO level within the
three pathway categories: oxidative stress response, detoxifica-
tion, and photosynthesis. For each KO, we compiled its func-
tional description along with the number of downregulated and
upregulated contigs assigned to it across eukaryotic taxonomic
classes (Tables S5-S7). Consistent with the overall differential
expression patterns (Table 1), most KOs had more downregu-
lated than upregulated contigs. For KOs associated with oxida-
tive stress responses, Dinophyceae had the highest number of
downregulated contigs following GBH treatment, while Insecta
had the highest number of upregulated contigs (Table S5). For
KOs associated with detoxification, Dinophyceae had the high-
est number of downregulated contigs, whereas Eurotatoria had
the highest number of upregulated contigs (Table S6). For KOs
associated with photosynthesis, Dinophyceae had more regu-
lated contigs than Cryptophyceae, and no upregulated contigs
were detected in Cryptophyceae (Table S7).

4 | Discussion

Biomonitoring based on eRNA has the potential to complement
surveys that primarily focus on community composition (e.g.,
morphotaxonomy and eDNA metabarcoding) and provide a
more integrative assessment of environmental changes and eco-
system health (Cristescu 2019; Yates et al. 2021). In this study,
we used metatranscriptomics based on eRNA to investigate how
a common glyphosate-based herbicide affected gene transcrip-
tion across multiple eukaryotic taxa in a complex freshwater
community. We found that metatranscriptomics based on eRNA
can capture gene transcription signals across diverse aquatic
eukaryotic taxa and detect changes in relative transcript abun-
dance and functional gene expression in response to environ-
mental stress.

4.1 | Challenges in Metatranscriptomics Based
on eRNA

Metatranscriptomics based on eRNA presents several chal-
lenges, particularly regarding RNA quality, as no standardized
method exists to assess eRNA integrity as is done for single-
species RNA. A key concern in previous research was whether
mRNA derived from eRNA samples retained poly(A) tails. Due
to this uncertainty, two studies comparing extra-organismal
and organismal RNA for detecting transcriptomic responses of
single species to environmental stress opted for rRNA depletion
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FIGURE4 |

Heatmap showing the number of differentially expressed contigs assigned to KEGG Level 2 pathways across five taxonomic catego-

ries. Each row represents one of the KEGG Level 2 pathways, and each column represents the number of contigs that were either downregulated (left
five columns) or upregulated (right five columns) in response to the GBH treatment.

during library preparation (Hechler et al. 2025; Hiki et al. 2023).
However, this approach led to only 0.5% and 0.6% of reads in
eRNA samples mapping to target species genomes, as rRNA
remained overwhelmingly abundant. In contrast, our study
successfully applied poly(A) selection, achieving an average of
94.9% of reads assigned to eukaryotes among those that could be

assigned at the domain level, confirming that eRNA quality was
sufficient for library preparation.

Data analysis presents additional challenges. Public databases
lack well-annotated genomes and reference sequences for many
freshwater plankton species, limiting the accuracy of taxonomic
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FIGURE 5 | Heatmaps showing expression patterns of differentially expressed contigs associated with oxidative stress response and xenobiotic
metabolism pathways across nine major taxonomic classes. Z-scores were calculated for each contig for clustering. (A) Downregulated contigs as-
sociated with three KEGG pathways related to oxidative stress response. (B) Upregulated contigs associated with three KEGG pathways related to
oxidative stress response. (C) Downregulated contigs associated with the “Metabolism of xenobiotics by cytochrome P450” pathway. (D) Upregulated
contigs associated with the “Metabolism of xenobiotics by cytochrome P450” pathway.

assignment. To mitigate this limitation, we focused on taxo-
nomic assignment at the class level, which does not require
high sequence similarity to reference databases (Levy Karin
et al. 2020). Differential gene expression analysis also presents
challenges, as observed changes in gene expression may re-
sult from variations in taxonomic composition and organismal
abundance rather than regulatory processes. To mitigate this,
we normalized read counts separately for each major class and
combined them for statistical analysis, following Klingenberg
and Meinicke (2017). However, new statistical methods, such

as those incorporating species or DNA abundance as covariates
(Zhang et al. 2021), are less feasible for eukaryotes than for pro-
karyotes, due to incomplete reference databases and the com-
plexity of eukaryotic genomes.

Interpreting metatranscriptomics results involves further com-
plexities. For example, gene expression can persist post-mortem,
as transcriptional shutdown is a gradual process (Bonadio
et al. 2021; Pozhitkov et al. 2017). Thus, eRNA likely reflects
both gene expression at the time of cellular release and residual
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activity during cell death, offering both challenges and oppor-
tunities. Additionally, eRNA may not fully capture functional
gene expression, as single-species studies show it detects only
a subset of genes compared to tissue or whole-organism RNA
(Hechler et al. 2025; Hiki et al. 2023). Environmental stressors
can potentially accelerate RNA degradation, further compli-
cating comparisons between control and treatment conditions.
Despite these challenges, our results demonstrated that eRNA-
based metatranscriptomics effectively captured community
and gene expression responses to GBH exposure. Continued
improvements in reference databases, analytical methods, and
statistical models will help overcome current challenges.

Extra-organismal RNA degrades rapidly, with an approximately
10-h half-life in laboratory conditions (Marshall et al. 2021) and
even faster decay in natural environments due to biotic (e.g.,
extracellular enzymes) and abiotic (e.g., UV, chemical) factors
(Barnes and Turner 2016). In this study, we used outdoor meso-
cosms filled with natural lake water, where these degradation
factors likely accelerated the breakdown of RNA. Additionally,
we selectively captured eukaryotic mRNA through poly(A) tail
selection during library preparation, a method more sensitive to
RNA integrity compared to qRT-PCR and digital PCR. Together,
these factors allowed us to make meaningful comparisons of the
relative transcriptional contributions of major taxonomic classes
among samples and between treatments.

4.2 | Attribution of GBH Effects

Although we did not include untreated control mesocosms that
were sampled at both time points to assess natural temporal
variation over 24 h, two previous studies conducted at the same
facility using planktonic communities from the same source
lake reported no significant weekly changes in community
composition in control ponds through morphological and eDNA
analyses (Hébert et al. 2021; Loria et al. 2025). Given that the
treatment samples were collected 24h after the control sam-
ples in this study, the observed differences between control and
treatment samples are unlikely to be due to natural temporal
changes and are instead attributable to the GBH treatment.

4.3 | Effects of GBH on Different Eukaryotic
Classes

The extensive use of GBHs in agriculture for weed control has
led to their widespread presence in aquatic ecosystems (Klatyik
et al. 2024). Although GBHs can promote the growth of certain
phytoplankton species by acting as a nutrient (Wang et al. 2016),
we observed a decrease in the relative transcript abundances of
two abundant phytoplankton classes after 24h of GBH expo-
sure. While GBHs have adverse effects on zooplankton, studies
revealed that their impact varies among different zooplankton
groups (Hébert et al. 2021; Polla et al. 2022). Among the three
zooplankton classes analysed in this study, we found that the
relative transcript abundance of cladocerans (Branchiopoda)
increased, while those of copepods (Hexanauplia) and rotifers
(Eurotatoria) decreased after 24h of GBH exposure. This pat-
tern may reflect differences in taxon-specific sensitivity or phys-
iological response. These results are consistent with a previous

study on the same freshwater community, which found that co-
pepod and rotifer biomass declined 1day after GBH exposure,
whereas cladocerans showed no apparent decrease during the
initial 24-h period (Hébert et al. 2021). Changes in relative tran-
script abundance between control and treatment could also be
attributed to the direct effects of GBH on organisms, indirect
effects from altered species interactions following the distur-
bance, or the release of environmental nucleic acids immedi-
ately after death. Moreover, the increased relative transcript
abundances of cladocerans and insects after GBH exposure may
also be attributed to their longer lifespans as metazoan taxa,
since the classes that declined in relative transcript abundances
are known to be shorter-lived taxa. Despite the short 24-h du-
ration of our GBH treatment, these findings are consistent with
studies showing that GBH differently affects taxa and can alter
community composition (Hébert et al. 2021; Polla et al. 2022;
Wang et al. 2016).

4.4 | Natural Pond Variation

In addition to GBH treatment effects, we observed substantial
variation in the relative transcriptional contributions of differ-
ent taxonomic groups among ponds, despite all being filled with
water from the same source lake. This variability likely reflects
natural differences in the initial community composition at the
time of filling, such as random sampling variation affecting
taxa presence. Moreover, the 6-week period before the experi-
ment allowed for further divergence due to microenvironmen-
tal differences, species interactions, and ecological drift. Our
PCoA analysis (Figure 3A) and class-level taxonomic summa-
ries (Figure 2A) highlight these differences, demonstrating that
eRNA-based metatranscriptomics can effectively capture taxo-
nomic variation as reflected in relative transcriptional contribu-
tions in environmental samples.

4.5 | Effects of GBH on Gene Expression

The numbers of differentially expressed genes in most functional
categories at KEGG Level 2 were similar between phytoplankton
and zooplankton (Figure 4 and Figure S2). This similarity may
be because GBHs were originally developed to target terrestrial
weeds, whereas phytoplankton and zooplankton are non-target
organisms. The shared pattern could arise from GBHs inducing
detrimental effects through the same underlying mechanism
(i.e., oxidative stress), as summarised in Klatyik et al. (2024),
which then leads to comparable gene expression changes in both
phytoplankton and zooplankton groups.

In terms of functional gene expression changes, we found that
the GBH treatment resulted in more downregulation (45.0% of
analysed genes) than upregulation (1.8% of analysed genes).
This is likely due to the toxic effects of GBH, which can cause
cellular and DNA damage (Hao et al. 2019), potentially impair-
ing normal gene transcription and resulting in widespread gene
downregulation. A similar trend was reported in the alga Fucus
virsoides, where RNA-Seq revealed more gene downregulation
than upregulation following GBH exposure (Gerdol et al. 2020).
It is also possible that for some genes, both organismal and
extra-organismal RNA contributed to the control samples, while
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only extra-organismal RNA may have remained detectable in
the treatment samples if GBH exposure led to organism mor-
tality. This could result in the presence of these genes in both
control and treatment samples but lead to downregulation ob-
served in the gene expression analysis. These findings highlight
the need for caution when interpreting downregulated tran-
scripts, as they may represent cytotoxic effects rather than just
specific metabolic responses. Interestingly, in the two classes
that showed an increase in relative transcript abundances after
treatment (Branchiopoda and Insecta), 14.2% and 40.7% of the
analysed genes, respectively, responded to the GBH treatment.
These percentages are lower than those observed in the other
seven analysed classes, except for Dinophyceae (Table 1). These
lower percentages may reflect greater tolerance to GBH in these
classes or slower degradation of RNA due to longer organismal
persistence in the environment after exposure.

Although most KO groups showed predominantly downreg-
ulated contigs following GBH exposure, some KOs included
both upregulated and downregulated contigs (Tables S5-S7).
This pattern is expected because each KO represents a func-
tional category that may include homologous genes from mul-
tiple taxa and multiple genes from the same species (Kanehisa
et al. 2016). Several qPCR studies on single animal species have
reported variable transcriptional responses to GBH exposure,
with response direction often depending on gene target, GBH
formulation and concentration, exposure duration, species,
developmental stage, and sex (de Melo et al. 2019; Kronberg
et al. 2018; Le et al. 2010). For example, a 24-h glyphosate ex-
posure in Daphnia magna decreased the expression of aryl hy-
drocarbon receptor nuclear translocator (arnt) and cytochrome
P450 4 (cyp4), but had no effect on vitellogenin (vtg) or cyto-
chrome P450 314 (cyp314) (Le et al. 2010). Similarly, a 7-day GBH
exposure in males of the freshwater prawn Macrobrachium po-
tiuna increased the expression of ecdysteroid receptor (ecr) and
moult-inhibiting hormone (mih) and decreased the expression
of vtg, with no changes observed in females under the same con-
ditions (de Melo et al. 2019). Thus, the presence of both upreg-
ulated and downregulated contigs within the same KOs likely
reflects the complex and dynamic transcriptional responses to
GBH exposure.

Among the differentially expressed genes in response to the
GBH treatment, the upregulated genes may encode proteins
involved in GBH degradation or reflect metabolic responses
to GBH exposure. These genes could serve as valuable candi-
date genes for developing eRNA-based biomarkers for assess-
ing GBH-induced stress or pollution. Although elucidating the
mechanisms of toxicity and species recovery following GBH
exposure is beyond the scope of this study, future work should
incorporate multiple post-exposure timepoints to distinguish
eRNA signals reflecting active transcriptional responses from
those released by organisms damaged or killed due to GBH tox-
icity. Complementary data on organismal abundance (e.g., via
microscopy or eDNA) would help determine the extent to which
shifts in relative transcript abundance reflect changes in organ-
ismal abundance. Nonetheless, our results demonstrate that
eRNA-based metatranscriptomics can reveal biologically mean-
ingful, taxon-specific transcriptional patterns associated with
pollutant exposure, even from a single timepoint survey. This
supports the sensitivity of eRNA-based metatranscriptomics for

detecting molecular-level stress responses in freshwater ecosys-
tems and underscores its potential as a tool for environmental
biomonitoring.

5 | Conclusion

We evaluated eRNA-based metatranscriptomics for assessing
gene transcriptional responses of freshwater eukaryotic com-
munities under environmental stress, using GBH exposure as
a case study. Our results demonstrate that this non-invasive
method can efficiently capture the relative transcriptional con-
tributions and functional gene expression responses of diverse
freshwater eukaryotic taxa. We identified numerous differ-
entially expressed genes associated with molecular pathways
known to be impacted by GBH. Despite challenges such as data
analysis complexities, reference database limitations, and the
need for broader testing across systems and stressors, our meso-
cosm study highlights the significant potential of eRNA-based
metatranscriptomics for environmental biomonitoring.
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Supporting Information

Additional supporting information can be found online in the Supporting
Information section. Figure S1: Relative transcript abundances of (A)
domains and (B) phyla in each sample. In panel (B), “Others” represents
the sum of eukaryotic phyla with <1% relative transcript abundance in
every sample, while “Unassigned_Eukaryota” includes reads assigned
to Eukaryota but not classified at the phylum level. Some sequences
were assigned to the class level but not to a specific phylum due to the
structure of the NCBI taxonomy database and are therefore included in
“Unassigned_Eukaryota”. For example, Dinophyceae, classified within
the superphylum Alveolata, lacks a defined phylum-level designation,
so its reads fall under “Unassigned_Eukaryota” in panel (B). Figure S2:
Summary of differentially expressed contigs for each KEGG Level
2 pathway. Contigs with significant expression differences between
treatment and control were annotated using eggNOG-mapper and sum-
marised by pathway. The bar names on the y-axis represent the KEGG
Level 2 pathways, with bars belonging to each KEGG Level 1 pathway
separated by dashed lines. Figure S3: Expression patterns of differen-
tially expressed contigs associated with two photosynthesis-related mo-
lecular pathways in the two phytoplankton classes (Cryptophyceae and
Dinophyceae). (A) Downregulated contigsin response to GBH treatment.
(B) Upregulated contigs in response to GBH treatment; no upregulated
contigs were detected in Cryptophyceae. Table S1: Validation of major
classes identified in eRNA data based on previous studies and known
freshwater distributions. Table S2: Number of reads processed at each
step. Table S3: Statistical analysis of relative transcript abundance dif-
ferences between treatment and control samples for nine major classes
using LMMs and rLMMs. Table S4: Results of KEGG Orthology (KO)
enrichment analysis. Table S5: Number of upregulated and downregu-
lated contigs assigned to KEGG Orthologs (KOs) within three oxidative
stress-related pathways (ko04146, ko00480, and ko00190). Table S6:
Number of upregulated and downregulated contigs assigned to KEGG
Orthologs (KOs) within the detoxification-related pathway (ko00980).
Table S7: Number of upregulated and downregulated contigs assigned
to KEGG Orthologs (KOs) within two photosynthesis-related pathways
(ko00195 and ko00196) in Cryptophyceae and Dinophyceae.
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