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ABSTRACT
Traditional morphology- and molecular-based biodiversity surveys provide essential information on species composition and 
diversity, but they rarely provide information about the physiological states of organisms, which are key indicators of ecosystem 
health. Environmental RNA (eRNA) has the potential to significantly enhance biomonitoring by providing insights beyond spe-
cies detection. Recent studies suggest that extra-organismal RNA released into the environment could help identify differentially 
expressed genes of single species. However, the feasibility of eRNA-based metatranscriptomics on complex environmental sam-
ples, containing both extra-organismal and organismal eukaryotic RNA, remains untested due to numerous experimental and 
analytical challenges. In this study, we explored the potential of eRNA-based metatranscriptomics, enriched for eukaryotes, as a 
tool to monitor environmental stress. We used outdoor mesocosms to examine the acute effects of a glyphosate-based herbicide 
(GBH) on gene transcription across diverse freshwater eukaryotic taxa. Our metatranscriptomics data revealed diverse eukary-
otic taxa spanning multiple trophic levels, including phytoplankton, zooplankton, ciliates, and aquatic insects. GBH treatment 
significantly altered the relative transcript abundances of most eukaryotic classes, with longer-lived taxa demonstrating greater 
tolerance compared to shorter-lived taxa. Differential expression analysis showed more gene downregulation than upregulation 
in response to GBH, likely due to its acute toxicity. Many differentially expressed genes were involved in molecular pathways 
associated with responses to GBH exposure, such as oxidative stress response and detoxification. Our results demonstrate that 
eRNA-based metatranscriptomics captures transcriptional signals from diverse aquatic eukaryotic taxa, providing insights into 
functional gene expression. As such, its application to support environmental monitoring of aquatic ecosystems warrants further 
exploration.
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1   |   Introduction

Molecular methods of species identification using DNA collected 
either directly from organisms (organismal DNA) or indirectly 
from their environment (environmental DNA) have revolution-
ised biodiversity surveys, offering high-throughput, cost- and 
time-efficient approaches that provide valuable biological data 
for environmental biomonitoring (Cristescu and Hebert  2018; 
Ficetola et al. 2008; Hebert et al. 2003; Pawlowski et al. 2014). 
Recent advances in environmental RNA (eRNA) may signifi-
cantly enhance environmental assessments by providing addi-
tional information beyond species detection (Cristescu  2019). 
Similar to environmental DNA (eDNA), eRNA metabarcoding 
can be used to detect species and characterise community com-
position (Littlefair et al. 2022; Miyata et al. 2022). As RNA de-
grades faster than DNA, it has been suggested that eRNA may 
better reflect the real-time status of species presence and com-
munity composition (Kagzi et al. 2022; Yates et al. 2021), thereby 
improving spatio-temporal resolution, particularly in heteroge-
nous environments with rapid species turnover. Most impor-
tantly, eRNA has the potential to measure expression levels of 
functional genes, providing additional ecological and physiolog-
ical information (Cristescu 2019).

Gene expression profiling using organismal RNA (oRNA) has 
been employed to assess the health status and stress levels of 
organisms (Akbarzadeh et  al.  2018; Logan and Somero  2011; 
Ramaswamy et al. 2001), as the regulation of gene expression is 
a fundamental strategy for organisms to adapt to environmental 
changes and cope with stress (Schulte 2004). Therefore, analyz-
ing gene expression using eRNA may also provide insights into 
the physiological status of organisms in complex communities. 
Recent transcriptomic analyses based on extra-organismal RNA 
have been used to detect the responses to heat stress in the water 
flea Daphnia pulex (Hechler et  al.  2025) and to pyrene expo-
sure in the Japanese rice fish Oryzias latipes (Hiki et al. 2023). 
Although extra-organismal RNA covered only a small portion 
of genes when compared to the full repertoire of genes derived 
from oRNA, these single-species studies found that extra-
organismal RNA detected differentially expressed genes in 
response to stress. In the fish and Daphnia studies, 14.0% and 
53.1% of the genes identified as differentially expressed in the 
eRNA data were also found to be differentially expressed in the 
oRNA data, respectively. Although these pioneering studies are 
promising, it remains to be tested whether eRNA can be used to 
detect transcriptomic responses of complex eukaryotic commu-
nities to environmental stress.

Traditionally, environmental metatranscriptomics studies 
have focused on bulk samples of prokaryotic organisms or spe-
cific eukaryotic taxonomic groups (e.g., Carradec et  al.  2018; 
Knapik et al. 2020; Mojib et al. 2017), with the extracted RNA 
originating mainly from living organisms. However, when fo-
cusing on complex eukaryotic communities containing both 
macro- and micro-eukaryotes, a typical water sample includes 
extra-organismal RNA as well as oRNA. Thus, in this study, 
we define eRNA as the RNA extracted from environmen-
tal samples, consisting of a mixture of extra-organismal RNA 
primarily derived from macro-eukaryotes and oRNA mainly 
derived from whole micro-eukaryotes (adapted from Hechler 
et al. 2025). Recovering taxonomic and functional information 

of eukaryotes based on environmental metatranscriptomics 
presents inherent challenges. The eukaryotic community is 
highly diverse both taxonomically and ecologically, and captur-
ing such diversity requires a substantial number of sequences 
per sample. Moreover, most eukaryotes lack a reference genome, 
and public databases have insufficient nucleotide and amino 
acid sequences for eukaryotic genes (Lewin et al. 2018; Shakya 
et  al.  2019). This shortage impacts the accuracy of taxonomic 
and functional annotation of RNA-Seq reads. There are also 
concerns related to the quantity and quality of eRNA (particu-
larly of extra-organismal origin) when it comes to library prepa-
ration (Hiki et al. 2023). Lastly, differential expression analysis 
is more challenging than single-species studies because it is 
difficult to determine if changes in expression levels are due to 
gene expression regulation or differences in species composition 
among sample groups (Klingenberg and Meinicke 2017; Zhang 
et al. 2021). Despite these challenges, the potential advantages 
of eRNA-based metatranscriptomics include non-invasive sam-
pling and the ability to capture a broader range of eukaryotic 
groups than bulk samples. In addition, the continual growth 
of reference genomes makes eRNA-based metatranscriptomics 
an attractive choice for monitoring environmental changes and 
stress.

Here we investigate how metatranscriptomics based on eRNA 
can be applied beyond species detection to assess the physiolog-
ical status of complex eukaryotic communities under environ-
mental stress. As a case study, we examined the acute effects 
of a glyphosate-based herbicide (GBH) on gene transcription in 
diverse freshwater eukaryotic taxa using outdoor mesocosms. 
The widespread use of GBHs in agriculture has led to contam-
ination of aquatic environments, directly causing mortality in 
many species (Gonçalves et al. 2019; Rico-Martínez et al. 2012) 
and reducing species richness in plankton communities (Fugère 
et  al.  2020; Hébert et  al.  2021). Using an eRNA-based meta-
transcriptomics approach enriched for eukaryotes, we exposed 
complex freshwater communities to a GBH for 24 h and assessed 
changes in gene transcription of major eukaryotic groups. Given 
that GBH exposure may alter the transcriptional activity of sen-
sitive taxa, our first objective was to compare the relative tran-
script abundance of eukaryotic taxa before and after treatment. 
The second objective was to analyze the effects of GBH on gene 
transcription in major eukaryotic taxonomic groups. We pre-
dicted that GBH would trigger gene transcription responses, 
reflecting the toxic impacts of GBH and the responses of organ-
isms to mitigate the damage. Given that GBH has been reported 
to cause oxidative stress via reactive oxygen species production 
in various organisms, including algae, invertebrates, and ver-
tebrates (Klátyik et al. 2024; Modesto and Martinez 2010), we 
predicted that many differentially expressed genes would be in-
volved in oxidative stress response pathways.

2   |   Materials and Methods

2.1   |   Experimental Design and Sample Collection

The GBH treatment experiment was conducted at the Large 
Experimental Array of Ponds (LEAP) facility, located within a 
1000-ha protected forest at Gault Nature Reserve (Mont-Saint-
Hilaire, Quebec, Canada). Four pond mesocosms (approximately 
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1000 L each) were set up and filled with water from a reservoir 
connected to Lac Hertel (45°32′N, 73°09′W) between June 13 
and 17, 2022. Lac Hertel is considered free of herbicide pollution 
due to its location within a protected forested watershed with 
no history of agricultural activity (Fugère et al. 2020). The me-
socosms were left undisturbed for approximately six weeks to 
allow the communities to stabilize before the GBH treatment. 
Control samples were collected from the four ponds on July 26, 
2022. Subsequently, 57.2 mL of Roundup Super Concentrate 
Grass and Weed Control (reg. no. 22759; Bayer) was added to 
each pond to target a total glyphosate concentration of 15 mg/L, 
assuming a pond volume of 1000 L. We selected a targeted con-
centration of 15 mg/L for our acute effect experiment based on 
previous studies that found strong responses of phytoplank-
ton and zooplankton to this dose of GBH at the same facility 
(Fugère et  al.  2020; Hébert et  al.  2021). This concentration 
falls between the Canadian freshwater quality guidelines for 
long-term (0.8 mg/L) and short-term (27 mg/L) exposure limits 
(CCME 2012). Treatment samples were collected approximately 
24 h after the GBH exposure from the same four ponds on July 
27, 2022. However, we cannot attribute these effects solely to 
glyphosate, as the commercial GBH formulation used contains 
other toxic ingredients in addition to glyphosate (Mesnage and 
Antoniou 2017).

Water samples were collected from the upper 35 cm at multiple 
locations within each mesocosm using dedicated PVC tubes 
(one tube per pond). Two water samples (500 mL each) were fil-
tered through 0.7 μm glass microfiber filters (Millipore) for each 
pond on each sampling day. Filters were placed in 1.5 mL micro-
centrifuge tubes containing 375 μL of RLT buffer (Qiagen) and 
β-mercaptoethanol (Sigma-Aldrich), mixed at a volume ratio of 
100:1. To prevent eRNA degradation, water filtration was com-
pleted on site within 30 min from collection. Samples were im-
mediately placed on dry ice and then stored at −80°C until RNA 
extraction. A filtration blank was included on each sampling 
day by filtering 500 mL of distilled water using the same method 
as for the eRNA samples. In total, 16 eRNA samples and two 
filtration blanks were collected. Samples were identified using 
the format Pond_Treatment&ReplicateID. For example, sample 
“A_C1” refers to Replicate 1 from the Control group in Pond A.

2.2   |   RNA Extraction and RNA-Seq Library 
Preparation

RNA extraction, DNase treatment, and library preparation were 
conducted in a clean laboratory dedicated to environmental nu-
cleic acid research. Environmental RNA was extracted from the 
filters using the RNeasy Mini Kit (Qiagen) and ZR BashingBead 
Lysis Tubes (0.1 and 0.5 mm) (Zymo Research). Samples were 
thawed on ice. Each ZR BashingBead lysis tube was wetted 
with 200 μL of RLT buffer (with β-mercaptoethanol). Each filter 
and its preservation buffer were then transferred into one lysis 
tube, followed by the addition of another 175 μL of RLT buffer 
(with β-mercaptoethanol). Samples were homogenised using a 
TissueLyser (Qiagen), then centrifuged at 13,000 rpm for 3 min. 
The liquid from each sample was transferred to a new 1.5 mL 
microcentrifuge tube and centrifuged again at 13,000 rpm 
for 3 min. The supernatants were carefully transferred to new 
1.5 mL tubes. Subsequent steps followed the Qiagen RNeasy 

Mini Kit Handbook. One RNA extraction blank was included 
for each batch of RNA extraction. In total, RNA was extracted 
from 20 samples: 16 eRNA samples, two filtration blanks, and 
two extraction blanks.

RNA was quantified using a Qubit RNA High Sensitivity kit, 
and RNA quality was checked using an Agilent RNA 6000 Pico 
Kit (Agilent). There was no detectable RNA in the filtration 
and extraction blanks, as indicated by the Qubit results and the 
absence of bands in the gel image results from the BioAnalyzer. 
Therefore, RNA extracted from filtration and extraction blanks 
was not used for library preparation. Total RNA was subject 
to DNase digestion for 30 min using a Turbo DNA-free Kit 
(Thermo Fisher) prior to library preparation. Sixteen RNA-Seq 
libraries were prepared from eRNA samples, and one library 
preparation negative control was prepared using molecular-
grade water, with the Illumina Stranded mRNA Prep kits and 
IDT for Illumina RNA UD Indexes Set B (Illumina). During 
library preparation, mRNA with poly(A) tails was enriched 
using oligo(dT) magnetic beads according to the Illumina pro-
tocol. Libraries were sent to the McGill Genome Centre for 
quality checking, quantification, and sequencing using the 
Illumina NovaSeq 6000 S4 platform with paired-end 150 bp 
reads. One eRNA sample from the treatment group failed 
during library preparation.

2.3   |   De Novo Transcriptome Assembly 
and Annotation

The data analysis workflow involved bioinformatic analysis and 
post-bioinformatic analysis, each step of which is summarised 
in Figure 1. Raw sequences were processed using Trimmomatic 
0.36 to remove low-quality reads and Illumina adapters (Bolger 
et al. 2014). Ribosomal RNA (rRNA) sequences were discarded 
using SortMeRNA v4.3.6 (Kopylova et al. 2012), which aligned 
our sequences with several rRNA genes (i.e., 5S rRNA, 5.8S 
rRNA, 16S rRNA, 18S rRNA, 23S rRNA, and 28S rRNA) from 
the SILVA and Rfam databases (Griffiths-Jones et  al.  2003; 
Quast et al. 2013) included in the SortMeRNA v4 default data-
base. rRNA-depleted reads were assembled into contigs using 
MEGAHIT (Li et  al.  2016). Then, rRNA-depleted reads were 
mapped to the assembled contigs using Bowtie2 (Langmead 
and Salzberg  2012), and abundances for each contig in each 
sample were estimated using SAMtools (Li et al. 2009). A count 
matrix for each contig in each sample was generated using the 
get_count_table.py (https://​github.​com/​metaj​inomi​cs/​mappi​
ng_​tools​).

Taxonomy of the contigs was annotated following the 
DIAMOND+MEGAN pipeline for long reads (Bağcı et al. 2021). 
The contig sequences were split into three files using SeqKit 
(Shen et al. 2016) and subsequently aligned against the NCBI nr 
database (database downloaded on January 25, 2024) (Benson 
et  al.  2005) using DIAMOND v2.1.7 with the sensitive mode, 
frameshift-aware alignment mode, and range culling report-
ing mode (Buchfink et  al.  2021). The output DAA files were 
processed using the daa-meganizer tool of MEGAN v6.25.9 in 
long-read mode, applying the interval-union lowest common 
ancestor algorithm for taxonomic analysis of contigs (setting 
for daa-meganizer: --longReads -me 0.00001 -mpi 40) (Huson 
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et  al.  2016, 2018). The meganized DAA files were imported 
into the graphical user interface of MEGAN to export the tax-
onomic assignment results of the contigs. Based on the taxon-
omy assignment results at the domain level, contigs that were 
not assigned to Eukaryota were discarded and a count table for 
eukaryotic contigs was generated using the filter-table plugin 
of QIIME2 (Bolyen et  al.  2019). Functional annotation of the 
contigs was performed using the eggNOG-mapper v2.1.12 with 
the eggNOG v5.0.2 database (Cantalapiedra et al. 2021; Huerta-
Cepas et al. 2019).

2.4   |   Analyses of Class-Level Transcript Profiles

The eukaryotic contig count table was collapsed at the class level 
based on taxonomic assignment results from MEGAN. Contigs 
that were assigned to Eukaryota and could not be assigned at the 
class level were categorised as “Unassigned_Eukaryota” and re-
tained in the table. To confirm that the major taxonomic classes 
we detected were indeed present in the ecosystem, we employed 
two approaches: cross-referencing classes reported in previous 
studies that used freshwater communities derived from the 
same source lake (Fugère et al. 2020; Hébert et al. 2021; Loria 
et al. 2025) and confirming the widespread occurrence of these 
classes in freshwater ecosystems (Table  S1). The class count 
table, which contained the number of reads assigned to each 
class in each sample, was rarified to 600,000 reads per sample 
using QIIME2 (Bolyen et al.  2019). Bray-Curtis dissimilarities 

were estimated using the rarified table, and Principal Coordinate 
Analysis (PCoA) was performed on the resulting dissimilarity 
matrix.

The relative transcript abundance of each eukaryotic class 
in each sample was calculated based on the number of reads 
assigned to each class relative to the total number of reads 
assigned to Eukaryota in that sample. These values reflect 
relative transcriptional contributions rather than organismal 
abundances. We compared the relative transcript abundances 
between control and treatment for nine classes with the great-
est number of reads across the samples: three classes of zoo-
plankton (Branchiopoda, Eurotatoria, and Hexanauplia), two 
of phytoplankton (Dinophyceae and Cryptophyceae), two of 
ciliates (Oligohymenophorea and Spirotrichea), and two addi-
tional classes (Insecta and Magnoliopsida). For the nine major 
classes, differences in the relative transcript abundances be-
tween treatment and control were initially analysed using lin-
ear mixed effects models (LMM) with the lmerTest package 
(Kuznetsova et  al.  2017): the herbicide treatment (before vs. 
after GBH application) was set as a fixed effect and pond was 
set as a random effect for each model. Q-Q plots indicated that 
the residuals of the models for Branchiopoda, Dinophyceae, and 
Oligohymenophorea followed a normal distribution, while the 
residuals for the other six classes did not. Consequently, we re-
analysed the differences in relative transcript abundances be-
tween treatment and control for these six classes using robust 
linear mixed effects models (rLMM) with the robustlmm R 

FIGURE 1    |    Flowchart illustrating the general bioinformatic and post-bioinformatic analysis workflow used in this study.
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package (Koller 2016), as rLMM are less sensitive to deviations 
from normality. In the rLMM analyses, 95% confidence inter-
vals (CIs) for the effects of the treatment were estimated using 
the confintROB R package (Mason et al. 2024), and p values to 
determine the significance of the fixed factor effects were cal-
culated following the method outlined in Geniole et al. (2019).

2.5   |   Differentially Expressed Gene Analysis

Based on the taxonomy assignment results of the contigs at 
the class level, a contig count table for each of the nine major 
classes was generated by extracting the relevant data from the 
eukaryotic contig count table. We followed the recommen-
dation of Klingenberg and Meinicke  (2017) to normalise gene 
expression data using DESeq2 (Love et al. 2014) for each class 
separately and recombine the normalised data into a count ma-
trix to analyse differentially expressed genes. Low-count genes 
were pre-filtered, and only contigs with at least 10 normalised 
counts in at least four samples were included in the differential 
gene expression analysis. For statistical analyses, a variance-
stabilising transformation was performed on the counts of each 
contig using DESeq2 (Love et al. 2014), followed by LMM analy-
ses on the transformed counts with lmerSeq (Vestal et al. 2022). 
In the LMM analyses, treatment was set as a fixed effect 
and pond was set as a random effect. p values were adjusted 
using the Benjamini-Hochberg (BH) method (Benjamini and 
Hochberg  1995). KEGG Orthology (KO) enrichment analysis 
for differentially expressed genes were performed using the en-
richer function of the clusterProfiler R package (Yu et al. 2012). 
The contigs that passed the filtration criteria for differential ex-
pression analysis were used as background.

3   |   Results

3.1   |   Summary of Sequencing and Taxonomy 
Composition

In total, 3.4 billion reads (i.e., 1.7 billion paired-end reads) were 
generated for the 16 libraries (15 eRNA samples and one library 
preparation negative control) (Table S2). After denoising and re-
moving rRNA reads, the reads were assembled into 1,726,846 
contigs with 2.5 billion reads mapped to those contigs. Among 
them, 1.6 billion (64.0%) reads were taxonomically assigned to 
a domain, while 0.9 billion (36.0%) were not. The average per-
centage of reads assigned to Eukaryota, Archaea, and Bacteria 
across the eRNA samples was 94.9% (105,617,564 reads), 1.5% 
(1,918,501 reads), and 3.6% (2,370,320 reads), respectively, with 
similar patterns in each sample (Figure  S1). In contrast, the 
corresponding percentages in the library negative control were 
13.2% (2039 reads), 0.01% (2 reads), and 86.8% (13,410 reads), 
respectively. Given that the number of eukaryotic reads in the 
library negative control sample was 2039, which is very small 
compared to the average of 105.6 million eukaryotic reads in the 
eRNA samples (Table S2), this sample was removed from down-
stream analysis.

Of the eukaryotic reads, the average percentage assigned at the 
class level across the 15 eRNA samples was 74.4% (Figure 2A). 
The most transcriptionally represented class was Dinophyceae, 

with an average percentage of 20.1%. The second and third most 
represented classes were Branchiopoda and Insecta, with aver-
age percentages of 14.2% and 13.1%, respectively. Spirotrichea 
and Eurotatoria also had substantial representation, averag-
ing 6.3% and 6.2%, respectively. The predominantly terrestrial 
groups, Magnoliopsida and Mammalia, accounted for average 
proportions of 1.2% and 0.2%, respectively, and both were con-
sidered unexpected taxa. Magnoliopsida reads may originate 
from airborne plant material, such as pollen, while Mammalia 
reads could be attributed to the presence of mammals living 
around the area.

In general, replicates collected from each pond at the same 
sampling time showed similar class level transcript profiles 
(Figure 2A). Statistical analyses showed that eight of the nine 
analysed classes had significantly different relative transcript 
abundances between treatment and control, with Branchiopoda 
and Insecta having higher relative transcript abundances in the 
treatment, and the other six classes having higher relative tran-
script abundances in the control (Figure 2B and Table S3). The 
relative transcript abundance of Magnoliopsida was not signifi-
cantly different between treatment and control. PCoA revealed 
that GBH treatment influenced the transcriptional profiles of 
eukaryotic communities. Specifically, PCo1 captures the impact 
of the treatment, whereas PCo2 captures pond-specific differ-
ences (Figure 3A).

3.2   |   Differential Expression Analysis

The sample distance heatmap based on all gene expression 
data revealed two major clusters: one for control samples and 
the other for treatment samples, with replicates from each tank 
clustering together within their respective groups (Figure 3B). 
In total, LMM analyses showed there were 61,957 contigs that 
exhibited significantly different expression between treatment 
and control: expression of 59,554 contigs showed downregula-
tion in response to the GBH treatment, and 2403 contigs showed 
upregulation. Taxonomic annotation of these contigs allowed 
us to identify how many were differentially expressed within 
each class, and the numbers revealed a pattern of more down-
regulation than upregulation in every analysed class (Table 1). 
Those differentially expressed contigs encode genes involved in 
diverse molecular pathways (Figure  4 and Figure  S2). KEGG 
ortholog enrichment analysis identified 48 enriched terms 
(Table S4), representing key biological pathways. For instance, 
the enriched KO term K08914 (light-harvesting complex II chlo-
rophyll a/b binding protein 3) is associated with photosynthesis, 
while the enriched KO term K03661 (V-type H+−transporting 
ATPase 21 kDa proteolipid subunit) is associated with oxidative 
phosphorylation.

To interpret the biological significance of differential gene 
expression, we examined differentially expressed contigs 
annotated to KEGG pathways potentially affected by GBH 
treatment and visualised their expression patterns using heat-
maps (Figure 5 and Figure S3). To investigate oxidative stress 
responses, we identified 463 differentially expressed contigs an-
notated to glutathione metabolism (ko00480), 1513 to oxidative 
phosphorylation (ko00190), and 610 to peroxisome (ko04146). 
For detoxification, 263 differentially expressed contigs were 
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FIGURE 2    |    Effect of GBH treatment on relative transcript contributions of freshwater eukaryotic classes. (A) Relative transcript abundances of 
classes in each sample. “Others” represents the sum of eukaryotic classes with < 1% relative transcript abundance in every sample. “Unassigned_
Eukaryota” represents the reads assigned to Eukaryota but not to the class level. (B) Comparison of relative transcript abundances between treat-
ment and control for nine major classes. Asterisks (‘*’) indicate significant differences revealed by either LMM or rLMM, while “NS” denotes non-
significant difference.
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7 of 15Molecular Ecology, 2025

annotated to the metabolism of xenobiotics by cytochrome P450 
(ko00980) molecular pathway. To examine potential impacts on 
photosynthesis, we identified 649 differentially expressed con-
tigs annotated to the photosynthesis (ko00195) pathway and 228 
to the photosynthesis-antenna proteins (ko00196) pathway in the 

two phytoplankton classes (Cryptophyceae and Dinophyceae). 
The heatmap of downregulated contigs associated with oxida-
tive stress response (Figure 5A) reveals that treatment samples 
clustered together on the right and then grouped with control 
samples on the left, suggesting a consistent transcriptional 

FIGURE 3    |    Comparison of samples based on transcript-derived taxonomic composition and overall gene expression. (A) Principal coordinate 
analysis (PCoA) of Bray–Curtis dissimilarity based on transcript read counts assigned to eukaryotic classes (rarified to 600,000 reads per sample). 
(B) Heatmap of sample-to-sample distances based on gene expression data. Distances were calculated using eukaryotic contigs with at least 10 reads 
in at least four samples, and hierarchical clustering was performed on the sample distances.
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suppression in response to GBH exposure across treatment 
samples. In contrast, the heatmap of upregulated contigs associ-
ated with oxidative stress response (Figure 5B) shows that con-
trol samples clustered in the center, with treatment samples on 
both sides, indicating more variable upregulation among treat-
ment samples. The heatmaps of detoxification-related contigs 
(Figure 5C,D) exhibited patterns similar to those observed for 
oxidative stress response contigs in Figure 5A,B. In comparison, 
the heatmap of contigs associated with photosynthesis-related 
pathways (Figure  S3) displayed less consistent clustering pat-
terns between treatment and control groups, suggesting more 
heterogeneous transcriptional responses across samples.

To further investigate the genes associated with these KEGG 
pathways, we examined patterns at the KO level within the 
three pathway categories: oxidative stress response, detoxifica-
tion, and photosynthesis. For each KO, we compiled its func-
tional description along with the number of downregulated and 
upregulated contigs assigned to it across eukaryotic taxonomic 
classes (Tables S5–S7). Consistent with the overall differential 
expression patterns (Table  1), most KOs had more downregu-
lated than upregulated contigs. For KOs associated with oxida-
tive stress responses, Dinophyceae had the highest number of 
downregulated contigs following GBH treatment, while Insecta 
had the highest number of upregulated contigs (Table S5). For 
KOs associated with detoxification, Dinophyceae had the high-
est number of downregulated contigs, whereas Eurotatoria had 
the highest number of upregulated contigs (Table S6). For KOs 
associated with photosynthesis, Dinophyceae had more regu-
lated contigs than Cryptophyceae, and no upregulated contigs 
were detected in Cryptophyceae (Table S7).

4   |   Discussion

Biomonitoring based on eRNA has the potential to complement 
surveys that primarily focus on community composition (e.g., 
morphotaxonomy and eDNA metabarcoding) and provide a 
more integrative assessment of environmental changes and eco-
system health (Cristescu 2019; Yates et al. 2021). In this study, 
we used metatranscriptomics based on eRNA to investigate how 
a common glyphosate-based herbicide affected gene transcrip-
tion across multiple eukaryotic taxa in a complex freshwater 
community. We found that metatranscriptomics based on eRNA 
can capture gene transcription signals across diverse aquatic 
eukaryotic taxa and detect changes in relative transcript abun-
dance and functional gene expression in response to environ-
mental stress.

4.1   |   Challenges in Metatranscriptomics Based 
on eRNA

Metatranscriptomics based on eRNA presents several chal-
lenges, particularly regarding RNA quality, as no standardized 
method exists to assess eRNA integrity as is done for single-
species RNA. A key concern in previous research was whether 
mRNA derived from eRNA samples retained poly(A) tails. Due 
to this uncertainty, two studies comparing extra-organismal 
and organismal RNA for detecting transcriptomic responses of 
single species to environmental stress opted for rRNA depletion T
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during library preparation (Hechler et al. 2025; Hiki et al. 2023). 
However, this approach led to only 0.5% and 0.6% of reads in 
eRNA samples mapping to target species genomes, as rRNA 
remained overwhelmingly abundant. In contrast, our study 
successfully applied poly(A) selection, achieving an average of 
94.9% of reads assigned to eukaryotes among those that could be 

assigned at the domain level, confirming that eRNA quality was 
sufficient for library preparation.

Data analysis presents additional challenges. Public databases 
lack well-annotated genomes and reference sequences for many 
freshwater plankton species, limiting the accuracy of taxonomic 

FIGURE 4    |    Heatmap showing the number of differentially expressed contigs assigned to KEGG Level 2 pathways across five taxonomic catego-
ries. Each row represents one of the KEGG Level 2 pathways, and each column represents the number of contigs that were either downregulated (left 
five columns) or upregulated (right five columns) in response to the GBH treatment.
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10 of 15 Molecular Ecology, 2025

assignment. To mitigate this limitation, we focused on taxo-
nomic assignment at the class level, which does not require 
high sequence similarity to reference databases (Levy Karin 
et al. 2020). Differential gene expression analysis also presents 
challenges, as observed changes in gene expression may re-
sult from variations in taxonomic composition and organismal 
abundance rather than regulatory processes. To mitigate this, 
we normalized read counts separately for each major class and 
combined them for statistical analysis, following Klingenberg 
and Meinicke  (2017). However, new statistical methods, such 

as those incorporating species or DNA abundance as covariates 
(Zhang et al. 2021), are less feasible for eukaryotes than for pro-
karyotes, due to incomplete reference databases and the com-
plexity of eukaryotic genomes.

Interpreting metatranscriptomics results involves further com-
plexities. For example, gene expression can persist post-mortem, 
as transcriptional shutdown is a gradual process (Bonadio 
et  al.  2021; Pozhitkov et  al.  2017). Thus, eRNA likely reflects 
both gene expression at the time of cellular release and residual 

FIGURE 5    |    Heatmaps showing expression patterns of differentially expressed contigs associated with oxidative stress response and xenobiotic 
metabolism pathways across nine major taxonomic classes. Z-scores were calculated for each contig for clustering. (A) Downregulated contigs as-
sociated with three KEGG pathways related to oxidative stress response. (B) Upregulated contigs associated with three KEGG pathways related to 
oxidative stress response. (C) Downregulated contigs associated with the “Metabolism of xenobiotics by cytochrome P450” pathway. (D) Upregulated 
contigs associated with the “Metabolism of xenobiotics by cytochrome P450” pathway.
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activity during cell death, offering both challenges and oppor-
tunities. Additionally, eRNA may not fully capture functional 
gene expression, as single-species studies show it detects only 
a subset of genes compared to tissue or whole-organism RNA 
(Hechler et al. 2025; Hiki et al. 2023). Environmental stressors 
can potentially accelerate RNA degradation, further compli-
cating comparisons between control and treatment conditions. 
Despite these challenges, our results demonstrated that eRNA-
based metatranscriptomics effectively captured community 
and gene expression responses to GBH exposure. Continued 
improvements in reference databases, analytical methods, and 
statistical models will help overcome current challenges.

Extra-organismal RNA degrades rapidly, with an approximately 
10-h half-life in laboratory conditions (Marshall et al. 2021) and 
even faster decay in natural environments due to biotic (e.g., 
extracellular enzymes) and abiotic (e.g., UV, chemical) factors 
(Barnes and Turner 2016). In this study, we used outdoor meso-
cosms filled with natural lake water, where these degradation 
factors likely accelerated the breakdown of RNA. Additionally, 
we selectively captured eukaryotic mRNA through poly(A) tail 
selection during library preparation, a method more sensitive to 
RNA integrity compared to qRT-PCR and digital PCR. Together, 
these factors allowed us to make meaningful comparisons of the 
relative transcriptional contributions of major taxonomic classes 
among samples and between treatments.

4.2   |   Attribution of GBH Effects

Although we did not include untreated control mesocosms that 
were sampled at both time points to assess natural temporal 
variation over 24 h, two previous studies conducted at the same 
facility using planktonic communities from the same source 
lake reported no significant weekly changes in community 
composition in control ponds through morphological and eDNA 
analyses (Hébert et al. 2021; Loria et al. 2025). Given that the 
treatment samples were collected 24 h after the control sam-
ples in this study, the observed differences between control and 
treatment samples are unlikely to be due to natural temporal 
changes and are instead attributable to the GBH treatment.

4.3   |   Effects of GBH on Different Eukaryotic 
Classes

The extensive use of GBHs in agriculture for weed control has 
led to their widespread presence in aquatic ecosystems (Klátyik 
et al. 2024). Although GBHs can promote the growth of certain 
phytoplankton species by acting as a nutrient (Wang et al. 2016), 
we observed a decrease in the relative transcript abundances of 
two abundant phytoplankton classes after 24 h of GBH expo-
sure. While GBHs have adverse effects on zooplankton, studies 
revealed that their impact varies among different zooplankton 
groups (Hébert et al. 2021; Polla et al. 2022). Among the three 
zooplankton classes analysed in this study, we found that the 
relative transcript abundance of cladocerans (Branchiopoda) 
increased, while those of copepods (Hexanauplia) and rotifers 
(Eurotatoria) decreased after 24 h of GBH exposure. This pat-
tern may reflect differences in taxon-specific sensitivity or phys-
iological response. These results are consistent with a previous 

study on the same freshwater community, which found that co-
pepod and rotifer biomass declined 1 day after GBH exposure, 
whereas cladocerans showed no apparent decrease during the 
initial 24-h period (Hébert et al. 2021). Changes in relative tran-
script abundance between control and treatment could also be 
attributed to the direct effects of GBH on organisms, indirect 
effects from altered species interactions following the distur-
bance, or the release of environmental nucleic acids immedi-
ately after death. Moreover, the increased relative transcript 
abundances of cladocerans and insects after GBH exposure may 
also be attributed to their longer lifespans as metazoan taxa, 
since the classes that declined in relative transcript abundances 
are known to be shorter-lived taxa. Despite the short 24-h du-
ration of our GBH treatment, these findings are consistent with 
studies showing that GBH differently affects taxa and can alter 
community composition (Hébert et  al.  2021; Polla et  al.  2022; 
Wang et al. 2016).

4.4   |   Natural Pond Variation

In addition to GBH treatment effects, we observed substantial 
variation in the relative transcriptional contributions of differ-
ent taxonomic groups among ponds, despite all being filled with 
water from the same source lake. This variability likely reflects 
natural differences in the initial community composition at the 
time of filling, such as random sampling variation affecting 
taxa presence. Moreover, the 6-week period before the experi-
ment allowed for further divergence due to microenvironmen-
tal differences, species interactions, and ecological drift. Our 
PCoA analysis (Figure 3A) and class-level taxonomic summa-
ries (Figure 2A) highlight these differences, demonstrating that 
eRNA-based metatranscriptomics can effectively capture taxo-
nomic variation as reflected in relative transcriptional contribu-
tions in environmental samples.

4.5   |   Effects of GBH on Gene Expression

The numbers of differentially expressed genes in most functional 
categories at KEGG Level 2 were similar between phytoplankton 
and zooplankton (Figure 4 and Figure S2). This similarity may 
be because GBHs were originally developed to target terrestrial 
weeds, whereas phytoplankton and zooplankton are non-target 
organisms. The shared pattern could arise from GBHs inducing 
detrimental effects through the same underlying mechanism 
(i.e., oxidative stress), as summarised in Klátyik et  al.  (2024), 
which then leads to comparable gene expression changes in both 
phytoplankton and zooplankton groups.

In terms of functional gene expression changes, we found that 
the GBH treatment resulted in more downregulation (45.0% of 
analysed genes) than upregulation (1.8% of analysed genes). 
This is likely due to the toxic effects of GBH, which can cause 
cellular and DNA damage (Hao et al. 2019), potentially impair-
ing normal gene transcription and resulting in widespread gene 
downregulation. A similar trend was reported in the alga Fucus 
virsoides, where RNA-Seq revealed more gene downregulation 
than upregulation following GBH exposure (Gerdol et al. 2020). 
It is also possible that for some genes, both organismal and 
extra-organismal RNA contributed to the control samples, while 
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only extra-organismal RNA may have remained detectable in 
the treatment samples if GBH exposure led to organism mor-
tality. This could result in the presence of these genes in both 
control and treatment samples but lead to downregulation ob-
served in the gene expression analysis. These findings highlight 
the need for caution when interpreting downregulated tran-
scripts, as they may represent cytotoxic effects rather than just 
specific metabolic responses. Interestingly, in the two classes 
that showed an increase in relative transcript abundances after 
treatment (Branchiopoda and Insecta), 14.2% and 40.7% of the 
analysed genes, respectively, responded to the GBH treatment. 
These percentages are lower than those observed in the other 
seven analysed classes, except for Dinophyceae (Table 1). These 
lower percentages may reflect greater tolerance to GBH in these 
classes or slower degradation of RNA due to longer organismal 
persistence in the environment after exposure.

Although most KO groups showed predominantly downreg-
ulated contigs following GBH exposure, some KOs included 
both upregulated and downregulated contigs (Tables  S5–S7). 
This pattern is expected because each KO represents a func-
tional category that may include homologous genes from mul-
tiple taxa and multiple genes from the same species (Kanehisa 
et al. 2016). Several qPCR studies on single animal species have 
reported variable transcriptional responses to GBH exposure, 
with response direction often depending on gene target, GBH 
formulation and concentration, exposure duration, species, 
developmental stage, and sex (de Melo et  al.  2019; Kronberg 
et al. 2018; Le et al. 2010). For example, a 24-h glyphosate ex-
posure in Daphnia magna decreased the expression of aryl hy-
drocarbon receptor nuclear translocator (arnt) and cytochrome 
P450 4 (cyp4), but had no effect on vitellogenin (vtg) or cyto-
chrome P450 314 (cyp314) (Le et al. 2010). Similarly, a 7-day GBH 
exposure in males of the freshwater prawn Macrobrachium po-
tiuna increased the expression of ecdysteroid receptor (ecr) and 
moult-inhibiting hormone (mih) and decreased the expression 
of vtg, with no changes observed in females under the same con-
ditions (de Melo et al. 2019). Thus, the presence of both upreg-
ulated and downregulated contigs within the same KOs likely 
reflects the complex and dynamic transcriptional responses to 
GBH exposure.

Among the differentially expressed genes in response to the 
GBH treatment, the upregulated genes may encode proteins 
involved in GBH degradation or reflect metabolic responses 
to GBH exposure. These genes could serve as valuable candi-
date genes for developing eRNA-based biomarkers for assess-
ing GBH-induced stress or pollution. Although elucidating the 
mechanisms of toxicity and species recovery following GBH 
exposure is beyond the scope of this study, future work should 
incorporate multiple post-exposure timepoints to distinguish 
eRNA signals reflecting active transcriptional responses from 
those released by organisms damaged or killed due to GBH tox-
icity. Complementary data on organismal abundance (e.g., via 
microscopy or eDNA) would help determine the extent to which 
shifts in relative transcript abundance reflect changes in organ-
ismal abundance. Nonetheless, our results demonstrate that 
eRNA-based metatranscriptomics can reveal biologically mean-
ingful, taxon-specific transcriptional patterns associated with 
pollutant exposure, even from a single timepoint survey. This 
supports the sensitivity of eRNA-based metatranscriptomics for 

detecting molecular-level stress responses in freshwater ecosys-
tems and underscores its potential as a tool for environmental 
biomonitoring.

5   |   Conclusion

We evaluated eRNA-based metatranscriptomics for assessing 
gene transcriptional responses of freshwater eukaryotic com-
munities under environmental stress, using GBH exposure as 
a case study. Our results demonstrate that this non-invasive 
method can efficiently capture the relative transcriptional con-
tributions and functional gene expression responses of diverse 
freshwater eukaryotic taxa. We identified numerous differ-
entially expressed genes associated with molecular pathways 
known to be impacted by GBH. Despite challenges such as data 
analysis complexities, reference database limitations, and the 
need for broader testing across systems and stressors, our meso-
cosm study highlights the significant potential of eRNA-based 
metatranscriptomics for environmental biomonitoring.
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Supporting Information

Additional supporting information can be found online in the Supporting 
Information section. Figure S1: Relative transcript abundances of (A) 
domains and (B) phyla in each sample. In panel (B), “Others” represents 
the sum of eukaryotic phyla with < 1% relative transcript abundance in 
every sample, while “Unassigned_Eukaryota” includes reads assigned 
to Eukaryota but not classified at the phylum level. Some sequences 
were assigned to the class level but not to a specific phylum due to the 
structure of the NCBI taxonomy database and are therefore included in 
“Unassigned_Eukaryota”. For example, Dinophyceae, classified within 
the superphylum Alveolata, lacks a defined phylum-level designation, 
so its reads fall under “Unassigned_Eukaryota” in panel (B). Figure S2: 
Summary of differentially expressed contigs for each KEGG Level 
2 pathway. Contigs with significant expression differences between 
treatment and control were annotated using eggNOG-mapper and sum-
marised by pathway. The bar names on the y-axis represent the KEGG 
Level 2 pathways, with bars belonging to each KEGG Level 1 pathway 
separated by dashed lines. Figure S3: Expression patterns of differen-
tially expressed contigs associated with two photosynthesis-related mo-
lecular pathways in the two phytoplankton classes (Cryptophyceae and 
Dinophyceae). (A) Downregulated contigs in response to GBH treatment. 
(B) Upregulated contigs in response to GBH treatment; no upregulated 
contigs were detected in Cryptophyceae. Table S1: Validation of major 
classes identified in eRNA data based on previous studies and known 
freshwater distributions. Table S2: Number of reads processed at each 
step. Table S3: Statistical analysis of relative transcript abundance dif-
ferences between treatment and control samples for nine major classes 
using LMMs and rLMMs. Table S4: Results of KEGG Orthology (KO) 
enrichment analysis. Table S5: Number of upregulated and downregu-
lated contigs assigned to KEGG Orthologs (KOs) within three oxidative 
stress-related pathways (ko04146, ko00480, and ko00190). Table  S6: 
Number of upregulated and downregulated contigs assigned to KEGG 
Orthologs (KOs) within the detoxification-related pathway (ko00980). 
Table S7: Number of upregulated and downregulated contigs assigned 
to KEGG Orthologs (KOs) within two photosynthesis-related pathways 
(ko00195 and ko00196) in Cryptophyceae and Dinophyceae. 
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