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ABSTRACT
Anthropogenic pollution can have detrimental effects on organismal physiology, behavior, and fitness, but the underlying 
genomic mechanisms mediating these effects are not well understood. Epigenetic regulation, such as DNA methylation, has 
been proposed as a potential mechanism mediating these effects, but currently, there are few studies in wild populations. Here, 
we examined the methylation patterns of liver tissues from black guillemot (Cepphus grylle) in regions of the Canadian Arctic 
with different histories of exposure to polycyclic aromatic compounds (PACs)—contaminants associated with hydrocarbons 
and petrochemicals. As compared to a reference site with minimal PAC exposure, the two sites with exposure to anthropogenic 
sources of PACs (shipping and spills) shared more differentially methylated regions (DMRs) than they did with the site experi-
encing chronic exposure to natural PACs (a hydrocarbon seep). Furthermore, we found that guillemots that have been exposed to 
anthropogenic PACs are characterized by having DMRs with significantly greater ratios of hypermethylated to hypomethylated 
DNA versus the population experiencing chronic exposure to natural PACs. However, birds from all three sites with elevated 
PAC exposure shared a core set of DMRs, implying that there are some consistent methylation responses to this family of com-
pounds. Taken together, these results imply that the specific composition and exposure length of PACs can influence the direc-
tion of the epigenetic response. The identified DMRs serve as a genomic resource for further research investigating the functional 
role of DNA methylation in response to anthropogenic oil pollution.

1   |   Introduction

With decreases in the extent of Arctic sea ice due to climate 
change, anthropogenic activity has increased in Northern 
Canada, notably in the form of ship traffic, which has led to an 
increased risk of oil spill events (Mudryk et al. 2021). Oil con-
taminants such as polycyclic aromatic compounds (PACs) are 

a potent stressor that can cause widespread damage to local or-
ganisms, ranging from lethal effects via acute exposure to long- 
term effects via sublethal chronic exposure. Prolonged exposure 
can lead to health, growth, or reproductive problems in affected 
individuals (Brette et al. 2014; Eppley and Rubega 1990; Fowler 
et al. 1995; Fry and Lowenstine 1985). These effects can have 
severe population consequences, as documented by the delayed 
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recovery of harlequin duck (Histrionicus histrionicus; Iverson 
and Esler 2010) and sea otter (Enhydra lutris; Esler et al. 2018) 
populations for 14 and 20 years after oil spills, respectively. 
However, while the short- term physiological impacts of oil spills 
have been well studied, the underlying molecular mechanisms 
mediating these effects are not as well understood—partic-
ularly in wild populations (but see Crump et al. 2016; Zahaby 
et al. 2021, which use transcriptomic approaches to monitor re-
sponses to contaminants in Arctic seabirds).

Among the hundreds of PACs, 16 compounds have been identi-
fied as priority contaminants by organizations such as the U.S. 
Environmental Protection Agency (USEPA), the International 
Agency for Research on Cancer (IARC), and the Canadian 
Council of Ministers of the Environment (CCME). These PACs 
have two or more aromatic rings, are non- polar, stable, and 
hydrophobic, making them highly resistant to biodegradation 
and more likely to accumulate in soil or sediment (Adeola and 
Forbes  2021; Alaba et  al.  2018; Lemaire et  al.  2019; Sullivan 
et al. 2019). There are several other groupings of PACs that are 
often considered in toxicological studies. High molecular weight 
(HMW) PACs with four or more aromatic rings are more car-
cinogenic or mutagenic than low molecular weight (LMW) 
PACs with fewer aromatic rings (Agency (USEPA) 2000; Costa 
et al. 2017; Shi et al. 2018). However, in contrast to HMW PACs, 
LMW PACs tend to remain in solution and are readily avail-
able to marine organisms through ingestion or respiration, 
making them more toxic for marine biota, and are mostly as-
sociated with acute toxicity and genotoxicity rather than car-
cinogenic properties (Kieta et al. 2023). The solubility of LMW 
PACs also increases with temperature, making them more 
bioavailable in warmer seasons (National Research Council 
Canada Environmental 1983; Neff 1980). In general, the ratio of 
LMW:HMW PACs tends to be higher in anthropogenic sources 
of PACs (e.g., oil spills) than from natural sources (e.g., natural 
seeps; Provencher et al. 2020; Zahaby et al. 2025). These distinc-
tions between LMW and HMW PACs highlight the importance 
of considering the specific characteristics of different PACs 
when assessing their potential impact on the environment. 
Despite this, we are not aware of any studies that have directly 
compared the functional consequences of exposure to distinct 
PAC types in wild populations outside of the laboratory.

The specific response of organisms to environmental stressors 
can also be influenced by their timescale of exposure. Long- 
term, gradual exposure can often provide greater opportunities 
for adaptation and reduce the likelihood of extinction (Bell and 
Gonzalez 2009; Collins and De Meaux 2009). As such, slow rates 
of environmental change may allow for selection of beneficial 
mutations and changes in gene expression that contribute to 
adaptive responses in local populations (Bell 2013, 2017; Flores 
et  al.  2013; Harmon and Pfennig  2021; Morgan et  al.  2007; 
Samani and Bell 2016; Vanselow et al. 2022). In contrast, more 
rapid rates of environmental change can make acclimation or 
adaptation more difficult and lead to potentially detrimen-
tal phenotypic endpoints (Bay et al.  2017; Dolinoy et al.  2007; 
Turner 2009). As anthropogenic activities expose wild popula-
tions to increasingly variable and extreme changes in environ-
mental conditions (Eyer et al. 2019; Hu et al. 2018; IPCC 2018; 
Stott 2016; Walther et al. 2002), it is crucial to understand the 
distinct mechanisms that might permit populations to respond 

to diverse perturbation scenarios, resulting from chronic to 
acute exposure.

Epigenetic mechanisms, including histone modification, 
ncRNA, and DNA methylation, can play a key role in rapid re-
sponses to environmental stressors (Dutta et  al.  2018; Kilvitis 
et  al.  2017; Lim et  al.  2021; Verhoeven et  al.  2016), and could 
potentially serve as a useful indicator of the impacts of oil con-
tamination in marine wildlife. In particular, DNA methylation, 
which is the addition of a methyl group onto a cytosine and is 
usually associated with downregulation of gene expression, has 
been well studied and shown to be a reliable epigenetic marker 
as it is relatively stable, and not easily degraded during long- term 
storage (Moore et al. 2013). With advances in DNA methylation 
sequencing methods such as whole genome bisulfite sequencing 
(WGBS), it is becoming feasible to investigate how pollutants can 
induce changes in DNA methylation in wild populations of an-
imals (Chen et al. 2021; Hu et al. 2021; Laine et al. 2021; Zhang 
et al. 2021). Variation in DNA methylation may provide a mech-
anism to avoid declines in fitness when individuals are exposed 
to environmental changes (Janowitz Koch et  al.  2016). These 
changes can also act on shorter timescales than genomic adap-
tation (Bossdorf et al. 2008) and may persist across generations 
(Head 2014). However, the relevance of epigenetic responses to 
varying timescales of hydrocarbon exposure in wild populations 
remain unclear. Additionally, we are not aware of studies that 
have directly compared the functional consequences of expo-
sure to distinct PAC types on the epigenome of animals outside 
of the laboratory.

Research investigating DNA methylation changes induced by 
hydrocarbon exposure in wild animals has generally focused 
on global methylation responses rather than site- specific meth-
ylation changes, with these global shifts showing inconsistent 
patterns across studies. For example, a study in juvenile red 
drum (Sciaenops ocellatus) found significant associations be-
tween high PAC exposure and hypomethylation in global meth-
ylation levels (Cañizares- Martínez et al. 2022), whereas a study 
on double- crested cormorants (Phalacrocorax auritus) found 
no significant association between airborne PAC exposure and 
global methylation levels (Wallace et al. 2018). Analyzing site- 
specific methylation level differences can be useful because it 
enables the identification of differentially methylated regions 
(DMRs) that are associated with variation in ecologically rele-
vant phenotypes and behaviors (Schrey et al. 2012). Site- specific 
methylation data can help to identify differentially methylated 
CpG sites within specific gene regions, such as promoter regions 
or enhancers, which may be particularly important for regulat-
ing gene expression (Hu et al. 2014; Ko et al. 2013). Therefore, 
techniques such as WGBS can be valuable by permitting detec-
tion of CpG loci and the analysis of DNA methylation at single- 
base resolution across the genome (Beck et al. 2022).

Here, we used WGBS to investigate whether exposure to natural 
and anthropogenic sourced PACs was significantly associated 
with DNA methylation patterns in populations of a wild seabird, 
the black guillemot (Cepphus grylle). The black guillemot is a 
valuable model species in ecological and environmental studies, 
given its broad distribution across North Atlantic and Arctic ma-
rine regions and its sensitivity to environmental changes (Piatt 
et al. 2007). The black guillemots that breed along the eastern 
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shorelines of Baffin Island are thought to move potentially hun-
dreds of kilometers away from their colony during winter, but 
the exact migratory patterns of this species remain largely un-
known (Butler et al. 2020). During the breeding season, black 
guillemots gather in dense breeding colonies and generally for-
age within 15 km of these sites (usually much closer; see Mallory 
et al. 2019), making them highly amenable for monitoring and 
sample collection for contaminants research and allowing them 
to serve as useful indicators of oil exposure at the ecosystem level 
(e.g., Kuzyk et al. 2003; Piatt et al. 2007). The species' dietary 
reliance on benthic prey makes it vulnerable to marine pollut-
ants as they dive to a depth range of 15–18 m (Shoji et al. 2015). 
Previous studies have observed guillemot population declines 
correlating with increased polychlorinated biphenyl (PCB) lev-
els (Hoffman et  al. 1996; Kuzyk et  al.  2003). Thus, the black 
guillemot offers a versatile model for examining anthropogenic 
impacts on marine ecosystems and providing insights into pol-
lutant effects and climate- related changes.

Our objectives were twofold. First, we aimed to identify how 
sources of hydrocarbon pollution affected the methylation re-
sponse of exposed seabirds across a range of sites experiencing 
(1) acute exposure to spill- related, predominantly LMW PACs 
(SPILL), (2) chronic exposure to shipping- related, predomi-
nantly LMW PACs (SHIP), and (3) chronic exposure through 
a natural seep of predominantly HMW PACs (SEEP). Second, 
we compared how the methylation response of seabirds differed 
when exposed to a sudden, acute oil pollution event (the spill 
site) versus a chronic and more gradual oil exposure due to an-
thropogenic activity (the shipping activity site). By identifying 
DMRs that are unique to these different scenarios, our research 
contributes novel understanding about the epigenetic response 
mechanisms used by wild populations of animals exposed to an-
thropogenic stressors.

2   |   Materials and Methods

2.1   |   Site Descriptions

In June 2020, when black guillemots were breeding in the re-
gion, a spill of approximately 3000 L of crude oil occurred in 
Postville, Nunatsiavut (Nuka Research et al. 2023) (SPILL site). 
The high mobility and foraging behaviour of these birds (diving 
underwater to catch their prey) means that they are likely to en-
counter oil if it is present on the water's surface, sub- surface, and 
in the benthic zone (Henkel et al. 2012; Wiese and Ryan 2003). 
In addition to the SPILL site at Postville, we leveraged three ad-
ditional sites in Arctic Canada (one other in Nunatsiavut and 
two in Nunavut) for comparison in this study (Table 1; Figure 1). 
We selected Nain, Nunatsiavut (SHIP site) as a site that repre-
sented moderate shipping in the region because PAC exposure 
is elevated relative to the reference site due to higher levels of 
vessel traffic (Tables 1 and 2; Arctic Monitoring and Assessment 
Programme  2010; Harsem et  al.  2011; Pizzolato et  al.  2014). 
Like SPILL, this site is thus characterized by a higher ratio of 
LMW:HMW PACs (Zahaby et al. 2025; Figures 2 and 3A) but 
without the presence of an acute stress event such as an oil spill. 
In contrast, previous work has shown that birds at Qikiqtarjuaq, 
Nunavut (SEEP site), are exposed to natural hydrocarbon seeps, 
which are characterized by a lower ratio of LMW:HMW PACs T
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(i.e., more HMW PACs) (Provencher et al. 2020; Figures 2 and 
3A). Black guillemots at this site therefore experience chronic 
exposure to PACs with a different composition than those pres-
ent at Postville and Nain in Nunatsiavut. Finally, Pond Inlet, 

Nunavut (REFERENCE site), was selected as a reference site for 
comparison due to a lack of natural oil seeps (Geological Survey 
of Canada  2022; van Luijk et  al.  2020). Importantly, there is 
relatively low vessel traffic at REFERENCE and SEEP sites as 

FIGURE 1    |    Locations of black guillemot colonies where liver samples were collected. Map data 2025 Google. Custom icons, annotations and leg-
end were added to indicate study sites and exposure types in relation to PAC contamination.

TABLE 2    |    Polycyclic aromatic compound (PAC) concentrations (ng/g lipid weight) measured in liver tissue of black guillemots (Cepphus grylle) 
collected in the Pond Inlet (REFERENCE) region in 2022 by Inuit hunters. The sum (∑) of lower molecular weight (LMW) parent PACs (i.e., 2–3 
ring compounds), alkylated LMW PACs (ALMW), and the sum of higher molecular weight (HMW) PACs (i.e., 4, 5 or 6 ring compounds), and their 
alkylated congeners (AHMW) are shown as well as parent heterocyclic (PHET) and alkylated heterocyclic compounds (AHET). The sum of the 
16 USEPA priority PACs in wet weight (ww), and lipid weight (lw; ng/g) are presented. The mean, median, minimum (Min), maximum (Max) and 
standard deviation (SD) values are presented.

Mean Median Min Max SD

Black guillemot—Pond Inlet (REFERENCE)

ΣParent LMW 1.89 0.00 0.00 17.37 4.21

ΣAlkylated LMW 294.54 292.73 51.60 469.52 124.97

ΣParent HMW 0.00 0.00 0.00 0.00 0.00

ΣAlkylated HMW 80.98 63.38 18.64 266.47 59.92

ΣParent HET 0.00 0.00 0.00 0.00 0.00

ΣAlkylated HET 17.84 15.45 0.00 60.82 16.56

ΣUSEPA PAC lw 1.89 0.00 0.00 17.37 4.21

ΣUSEPA PAC ww 0.05 0.00 0.00 0.40 0.11

ΣAlkylated PAC 375.52 379.78 123.86 659.64 156.27

ΣPAC 506.39 393.89 180.34 1232.48 289.39
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extensive sea ice coverage in the summer limits the accessibility 
and navigability of vessels (Haas and Howell 2015; Howell and 
Brady 2019), which is not the case for the SPILL and SHIP sites 
(Tables 1 and 2).

2.2   |   Tissue Choice

Liver tissue was selected for this study due to its critical role in 
detoxification and its relevance in assessing exposure to PACs. 
The liver has a large capacity for metabolizing xenobiotics, mak-
ing it an ideal tissue for investigating short- term exposure to con-
taminants in vertebrates (Custer et al. 2000; Hellou et al. 1996; 
Roscales et al. 2011). In birds, PACs have been detected in mul-
tiple tissues, including the liver, kidney, lung, brain, and muscle, 

but significant concentrations are often observed in the liver. For 
instance, Provencher et al. (2020) reported PAH concentrations 
ranging from 9.57 to 99.05 ng/g in the livers of marine birds.

2.3   |   Field Collections

We obtained fresh liver samples from bird carcasses of black 
guillemot, which were collected and flash frozen on- site. All col-
lections were conducted as approved under Canadian Council 
on Animal Care (CCAC) guidelines (Acadia University Permit 
ACC 02- 18) and federal, territorial, and scientific permits (ECCC 
NUN- NWA- 18- 02, NUN- SCI- 18- 02, GN- WL- 2018- 004, NIRB- 
17YN069, NPC- 148645, SC- NR- 2021- NU- 003, WL- 2021- 041, 
and NF- NR- 2021- NU- 002). The collected birds were of unknown 

FIGURE 2    |    Polycyclic aromatic compounds (PACs) in liver tissues of black guillemot (Cepphus grylle) collected by Inuit hunters in Pond Inlet 
(REFERENCE), Postville (SPILL), Nain (SHIP), and Qikiqtarjuaq (SEEP) (using the most conservative limits of detections applied to datasets as 
published in Provencher et al. (2020)). Mean values are given with error bars representing the standard error (only the positive deviation values are 
shown for simplicity of the figure). The sum (Σ) of lower molecular weight (LMW) parent PACs (i.e., 2–3 ring compounds), and the sum of higher 
molecular weight (HMW) PACs (i.e., 4, 5 or 6 ring compounds), and the sum of the 16 USEPA priority PACs are presented.

FIGURE 3    |    (A) Composition of PACs type LMW:HMW of the sites with significant exposure to PACs. (B) Distribution of hypo-  & hypermethyl-
ated DMRs between each PAC- exposed site and REFERENCE.
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sex, unbanded, and were not incubating eggs at the time of col-
lection (Butler et al. 2020). Although we do not have age struc-
ture data from these populations, there are no significant levels 
of bycatch of black guillemots in these areas (Anholt et  al. in 
press). Similarly, while this species is harvested across the range 
of this study, there is no evidence that it differs across the region, 
and thus, we do not think it is likely that there are systematic 
differences in the age structure of individuals sampled across 
sites. As described in detail in Provencher et al. (2020), teams of 
local Inuit hunters and researchers (all co- authors) at each site 
collected the seabirds using 12- gauge shotguns or 22 caliber ri-
fles, while the birds were away from the breeding colonies and 
feeding on the water. Liver samples were collected from birds 
at the REFERENCE site (n = 21) in October 2022, the SPILL 
(n = 14) and SHIP (n = 16) sites in October 2020, and from the 
SEEP site (n = 28) in August 2018. Foraging distances of indi-
viduals are typically less than 10 km during our collection dates 
(Dehnhard et  al.  2023), and thus, it is unlikely that birds fre-
quented more than a single study site (minimum distance be-
tween sites is 225 km). Although there is a seasonal change in 
diet between Autumn and Winter, no significant changes have 
been documented between our collection dates in August and 
October (Baak et al. 2021).

2.4   |   PAC Profiles in Guillemots

PAC concentrations have been previously reported from the 
samples collected at the SPILL, SHIP, and SEEP sites (see 
Provencher et  al.  2020; Zahaby et  al.  2025). Here, we present 
for the first time PAC data from the samples collected at the 
Pond Inlet (REFERENCE) site, using the same procedures as 
those studies. The extraction of liver tissue and the analysis to 
determine the concentrations of 52 PACs and their alkylated 
congeners in each bird were done using the methods described 
in Idowu et al. (2018) and Provencher et al. (2020) at COGRAD 
in Winnipeg. To compare across the four sites, we examine 
groups of PACs and specifically the ratio between LMW and 
HMW PACs.

2.5   |   DNA Extraction and WGBS Library 
Preparation

Liver samples were stored in a −80°C freezer for a maximum 
of 1–2 weeks prior to extraction. DNA and RNA of samples of 
black guillemot were extracted using QIAGEN AllPrep DNA/
RNA mini kit (Qiagen, Hilden, Germany) following the manu-
facturer's instructions. The DNA samples were submitted to the 
McGill Genome Center for whole- genome bisulfite sequencing 
(WGBS) library preparation using the Illumina DNA Prep li-
brary kit. Samples were sequenced on three lanes of Illumina 
NovaSeq 6000 with 2 × 150 bp paired- end reads at 15× target 
coverage.

2.6   |   WGBS Data Processing and Identification 
of Differentially Methylated Sites and Regions

We pre- processed the raw sequencing data using the bioinfor-
matics analysis pipeline methylseq v.2.3.0 through the workflow 

framework nf- core (Ewels et al. 2020). We first performed qual-
ity checks on the raw sequencing reads using FastQC v.0.11.9 
(Andrews et al. 2010), then trimmed the first two and last bases 
of every read using Trim Galore! v.0.6.7 (Krueger et  al.  2021) 
after initial inspection of Bismark M- bias plots. TrimGalore! 
was also used to remove base calls with a Phred score of 20 or 
lower, adapter sequences, and sequences shorter than 20 bases. 
We assessed the overdispersion factor (λ) using the mean and 
variance of methylation levels across the three sequencing lanes 
and found λ < 1, suggesting no evidence of overdispersion due to 
sequencing batch effects (Payne et al. 2017). We then mapped 
the processed reads to the black guillemot genome assembly 
(ASM1340106v1; NCBI BioProject PRJNA545868), dedupli-
cated, and extracted the methylation call data using Bismark 
v.0.24.0 (Krueger and Andrews  2011) function bismark_meth-
ylation_extractor. On average, each sample yielded 1 × 108 raw 
reads, and after quality filtering, we retained 1 × 108 reads. 
Across all samples, on average, we found that 7 × 107 (73.1%) 
of the quality- filtered reads uniquely mapped against the black 
guillemot genome assembly. In total, we analyzed an average of 
3 × 109 cytosine bases, of which 2 × 109 cytosines (67.08%) were 
methylated (Figure  S6A,B). To test for population structure, 
we performed SNP calling using CgmapTools (Guo et al. 2018), 
starting with converting deduplicated mapped reads (.bams) 
to CGmap file format using the function cgmaptools convert 
bam2cgmap, and calculated pairwise weighted Fst between sites 
using VCFtools (Danecek et al. 2011).

We assessed the DNA methylation differences in each seabird 
population from the three exposed sites (SPILL, SHIP, and SEEP) 
relative to the REFERENCE site. Following this, the CpG loci 
were identified using the R package methylKit v.1.24.0 (Akalin 
et al. 2012) by importing the extracted methylation call data from 
Bismark via the function methRead. We then filtered the CpG loci 
for a minimum coverage threshold of 5 (lo.count = 5) and a maxi-
mum of 100 reads per base (hi.count = 100), excluded bases in the 
99.9th percentile of coverage (high.perc = 99.9) using the filterBy-
Coverage function, and normalized the filtered reads using the 
normalizeCoverage function to prevent any potential PCR bias. We 
used the function unite, with the parameter destrand set to TRUE, 
to merge all CpG loci such that they are covered in at least 80% 
of samples per group. These CpG loci were then used to calculate 
differential methylation via the function calculateDiffMethDSS, 
which is a beta- binomial model from the DSS package (Feng et al. 
2014) that calculates the differential methylation statistics using a 
beta- binomial model with parameter shrinkage. We included se-
quencing lane as a covariate in the model to account for any po-
tential batch effects, and further filtered by FDR < 0.05 to correct 
for multiple testing. We then used the PCAsamples function to 
perform a principal component analysis (PCA) on the methylation 
level of all CpG loci between each comparison pair, and between 
all three comparisons to identify general methylation patterns, and 
the clusterSamples function with ward. D agglomeration method 
to perform hierarchical clustering. Subsequently, differentially 
methylated regions (DMRs) were identified using the function 
callDMR in the R v.4.1.3 (R Core Team 2021) package DSS v.2.47.1 
(Hao Feng 2019) with the default parameters: minimum length of 
50 bp for DMRs, minimum 3 CpG sites for DMRs, and minimum 
percentage of CpG sites with significant p- values (≤ 0.01) in DMRs 
at 50%, consistent with previous studies (Jeremias et  al.  2018; 
Skjærven et al. 2018; Wang et al. 2021). We assessed the statistical 
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significance of differences in the number of DMRs between study 
sites using a Pearson's Chi- Square test via the function prop. test 
in R, and differences in the ratios of methylation status (hyper-  vs. 
hypomethylated) using a Fisher's Exact Test. Furthermore, we 
also checked for any overlapping DMRs between each compari-
son pair, and between all three comparisons, using the genomic 
intersection tool Intervene v.0.6.5 (Khan and Mathelier 2017) and 
the intervene venn command. Statistical significance of the overlap 
between pairs of study sites of the reference site and each of all 
three sites, and the differences between the number of overlaps 
between comparisons were each calculated with a 10,000 round 
permutation test. All statistical tests were based on a heuristic that 
used the mean length of regions in our sets of DMRs (~400 bp) and 
the size of the genome (~1.3 × 109 bp) to calculate the total number 
of possible DMRs (~3 × 106 bp). All means are reported ± standard 
deviation unless otherwise noted.

2.7   |   Functional Analysis

We identified genes within the gene body region associated with 
shared DMRs via overlap with bedtools intersect (Quinlan and 
Hall 2010). We then used g:Profiler (Kolberg et al. 2023) to convert 
the gene symbol into ENSG ID to obtain functional information.

3   |   Results

3.1   |   PAC Profiles

The PAC concentrations from Qikiqtarjuaq (Provencher 
et al. 2020), Nain, and Postville (Zahaby et al. 2025) have pre-
viously been reported. Here, we focus on reporting new data 
on PAC concentrations from Pond Inlet (REFERENCE) and 
comparing PAC exposure between the four sites. We analyzed 
52 different PACs compounds (Table S1). Method detection lim-
its were all under 1 ng/g ww as reported in Idowu et al. (2018). 
Alkylated lower molecular weight (ALMW) PACs were detected 
at the highest concentrations (Table 2). Lower molecular weight 
parent PACs also contributed to total PAC burdens, indicative of 
a petrogenic PAC signature (Table 2).

Birds from each site showed evidence of distinct exposure 
histories to PACs, as reflected by clear differences in the con-
centrations of LMW and HMW PACs in their livers (Figures 2 
and 3A). The mean concentration of the sum of 16 USEPA pri-
ority PACs for REFERENCE (1.89 ± 4.21 ng/g) was 21 times 
lower than SPILL (40.71 ± 104.43 ng/g), 6 times lower than 
SHIP (11.77 ± 12.00 ng/g), and 49 times lower than SEEP 
(93.67 ± 408.93 ng/g) (Figure  2). Among the sites with signifi-
cant exposure to PACs, the ratio of LMW to HMW PACs dif-
fered significantly (Kruskal- Wallis: KW- H3 = 49.51, p < 0.0001). 
A Pairwise Wilcoxon test with Benjamini- Hochberg correction 
indicated that SEEP had significantly lower LMW/HMW ratios 
than all other sites (0.63; p < 0.001). No significant difference was 
found between SHIP (1.81; p > 0.05) and SPILL (4.99; p > 0.05; 
Provencher et al. 2020; Zahaby et al. 2025; Figures 2 and 3A), 
showing that LMW PACs constituted the majority of the total 
PAC burden for birds at both SPILL and SHIP sites, while HMW 
PACs were in the majority at the SEEP site. Considering that 
PACs are typically rapidly metabolized by organisms (Shilla and 

Routh 2018), the detected concentrations most likely represent 
exposure to these compounds within a few days prior to the col-
lection of the birds in their foraging zones around the breeding 
colonies.

3.2   |   Different Mechanisms of Response Between 
Sites With Different Exposure Histories

We found that the oil exposed populations varied in their number 
of differentially methylated regions relative to the reference pop-
ulation, with the sites exposed to the oil spill and chronic natural 
hydrocarbon seepage showing a greater number of DMRs than 
the site exposed to PACs via chronic shipping traffic. We iden-
tified 770 DMRs in the REFERENCE- SPILL comparison, 435 
DMRs in the REFERENCE- SHIP comparison, and 759 DMRs 
in the REFERENCE- SEEP comparison (Pearson's Chi- Square 
test: REFERENCE- SPILL vs. REFERENCE- SHIP, χ2 = 93.14, 
df = 1, p < 0.0001; REFERENCE- SEEP vs. REFERENCE- SHIP, 
χ2 = 87.90, df = 1, p < 0.0001) (Figure 3B; Tables S2–S4). The di-
rection of differential methylation varied according to the col-
lection site of the birds, with higher ratios of hypermethylation 
in sites exposed to anthropogenic PACs compared to sites ex-
posed to natural PACs (Fisher's Exact Test, p < 0.0001). In the 
REFERENCE- SPILL comparison, we identified 5.19% of the 770 
DMRs as being hypermethylated and 94.81% being hypomethyl-
ated. Similarly, in the REFERENCE- SHIP comparison, we iden-
tified 9.89% of the 435 DMRs as being hypermethylated versus 
90.11% hypomethylated. In contrast, in the REFERENCE- SEEP 
comparison, we found that 57.44% of the 759 DMRs were hyper-
methylated, whereas 42.56% were hypomethylated (Figure 3B).

3.3   |   Shared and Distinct Patterns of Methylation 
Across Sites

We found significantly more shared DMRs among sites than 
would be expected by chance, with a total of 112 (9.29%; 
Permutation test, p < 0.0001), 69 (4.51%; Permutation test, 
p < 0.0001) and 50 (4.19%; Permutation test, p < 0.0001) shared 
between REFERENCE- SPILL and REFERENCE- SHIP, be-
tween REFERENCE- SPILL and REFERENCE- SEEP, and 
between REFERENCE- SHIP and REFERENCE- SEEP, respec-
tively (Figure 4; Table S5–S7). In total, 30 DMRs were shared 
between all three comparisons with the reference site (1.53%; 
Permutation test, p < 0.0001) (Table  S8). However, the propor-
tion of shared DMRs across sites was also associated with the 
type of PAC exposure, with more DMRs shared between the two 
sites exposed to anthropogenic PACs (SHIP and SPILL) versus 
the comparison of each of these sites to the site exposed to natu-
ral PACs (Permutation test, p < 0.0001).

We used principal component analysis (PCA) to explore the 
variation in methylation patterns between the different sites. 
The first two principal components (PCs) explained 16.79% of 
the variation in the REFERENCE- SPILL comparison, 15.34% 
in the REFERENCE- SHIP comparison, and 14.36% in the 
REFERENCE- SEEP comparison when analyzing all CpG loci 
with 5× coverage across samples in the PCA (Figures  S1A–
S3A). When analyzing only DMRs in the PCA, the first two PCs 
explained 37.99%, 40.69%, and 34.70% of the variation in the 
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REFERENCE- SPILL, REFERENCE- SHIP, and REFERENCE- 
SEEP comparisons, respectively (Figures  S1B–S3B). In both 
PCAs (using all CpG loci and using only DMRs), there was clear 
separation between the exposed sites and the reference site in all 
three comparisons. In a PCA analyzing all four sites together, 
the first two principal components (PCs) explained 10.77% of 
the variation for all CpG loci (Figure  S4A) and 19.27% of the 
variation when using only DMRs. In the PCA analyzing DMRs 
only, there was some separation among the REFERENCE and 
SEEP sites versus the SHIP site and SPILL site (mainly on PC1) 
(Figure S4B).

3.4   |   Methylation Clustering Patterns and Genetic 
Variation Across Sites

Hierarchical clustering of all CpG loci showed SPILL and SHIP 
sites as largely grouping together, as did the REFERENCE and 
SEEP sites (Figure S5). The pairwise weighted Fst between sites 
ranges from 0.0003 to 0.005, indicating very low levels of genetic 
differentiation between populations. There is inconsistent cor-
respondence between methylation clustering and patterns of 
genetic differentiation as well as geographic distance. SHIP and 
SPILL are located nearest each other in geographic space, group 
together in methylation space, and also show the lowest level of 
genetic differentiation (Fst = 0.0003), whereas SHIP and SEEP 

show the highest level of genetic differentiation (Fst = 0.005) but 
are not the farthest apart in geographic space and some individ-
uals cluster close together in methylation space.

3.5   |   Functional Analysis

We identified 13 annotated genes (seven with ontology infor-
mation and six without) that overlap with the DMRs shared 
between the REFERENCE- SPILL and REFERENCE- SHIP 
comparisons, six (four with ontology information, two without) 
with the DMRs shared between the REFERENCE- SPILL and 
REFERENCE- SEEP comparisons, and none with the DMRs 
shared between the REFERENCE- SHIP and REFERENCE- 
SEEP comparisons (Tables S12 and S13). Finally, six annotated 
genes (five with ontology information, one without) overlapped 
with DMRs shared between all three comparisons with the ref-
erence site (Table S14).

4   |   Discussion

Anthropogenic activities are leading to an increase in envi-
ronmental stressors affecting wildlife health in Arctic popula-
tions, including PAC pollution (Hoffman et  al.  1996; Mudryk 
et  al.  2021). Epigenetic patterns may provide insights into the 

FIGURE 4    |    Venn diagram of DMRs shared between SPILL, SHIP and SEEP sites versus REFERENCE.

 17524571, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.70125, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9 of 15

underlying genomic mechanisms mediating physiological re-
sponses to PACs as well as potentially serving as a useful indica-
tor of the exposure history experienced by wild populations. We 
used a common and widespread seabird, the black guillemot, as 
a study system to test for differences in patterns of methylation 
among three sites, including an oil spill site, a high shipping 
traffic site, and a site with natural seepage of PACs exposed to 
varying types and exposure length of PACs to a reference site. In 
this methylome- wide analysis, we found that the liver tissues of 
individuals exposed to different levels and types of PAC contam-
ination possess methylome signatures with some shared charac-
teristics but also distinctive aspects. Specifically, we identified 
a core set of DMRs that overlapped among all sites exposed to 
higher concentrations of LMW PACs than at the reference site, 
suggesting some consistent epigenetic mechanisms of response 
in black guillemots in relation to the PACs measured. Moreover, 
the number of DMRs shared between the two sites exposed to 
anthropogenic sources of PACs (shipping traffic and oil spill) 
were significantly higher than the number of DMRs shared 
between these sites and the site exposed to natural PACs. This 
observation was further corroborated by the results of the hier-
archical clustering (Figure S5), which showed grouping of the 
two anthropogenic PAC- exposed sites, separate from the cluster 
formed by the reference site and the site exposed to natural PACs. 
This suggests there are certain methylation responses that are 
likely to be specific to exposure to anthropogenic LMW PACs.

Further supporting the idea that black guillemots might be uti-
lizing distinct epigenetic responses to natural versus anthropo-
genic sources of PACs were the significant differences in ratios 
of hyper versus hypomethylation between exposed sites and 
the reference. We found that DMRs at the SEEP site primarily 
reflected hypomethylation relative to the reference, whereas 
DMRs at the SPILL and SHIP sites overwhelmingly showed 
hypermethylation. The results from the SEEP site were consis-
tent with previous studies that have reported hypomethylation 
patterns associated with exposure to HMW PACs (Quintanilla- 
Mena et al. 2020; Shugart 1990; Teneng et al. 2011). It has been 
suggested that hypomethylation of gene promoters might allow 
increased expression of genes involved with stress response 
(Cavalli and Heard 2019; Metzger and Schulte 2016). In contrast, 
exposure of black guillemots to the mostly LMW PACs at SPILL 
and SHIP appears to have led to widespread DNA hypermethyl-
ation. However, these findings should be interpreted with cau-
tion. As the study was conducted on a limited number of wild 
populations, variability in DMRs among sites could also be in-
fluenced by a host of factors including, but not limited to, relat-
edness, age, sex, breeding status, migratory behaviors, diet, and 
individual metabolism of PACs (Caizergues et al. 2022; Chapelle 
and Silvestre  2022; Hu and Barrett  2017; Kilvitis et  al.  2014; 
Laine et al. 2021; Yen et al. 2024; Zhang et al. 2021). However, 
the pairwise weighted Fst between sites was < 0.005 in all cases, 
indicating high levels of gene flow and suggesting that methyla-
tion variation across the sites is unlikely to be shaped by genetic 
differentiation between the populations. We were unable to col-
lect sex data because we could not collect full intact carcasses for 
all birds, and black guillemots are sexually monomorphic, with 
sampling conducted after the breeding season in late August 
to October, so the birds were not incubating eggs. While we 
attempted sexing via PCR, we only had access to organ tissues 
rather than blood, and existing molecular methods that work 

well for blood (Griffiths et al. 1998; Kahn et al. 1998) were not 
successful with these tissue samples. Sex identification of this 
species using WGS/WGBS data is also not currently possible due 
to the lack of a chromosome- level genome assembly. However, 
all birds were post- hatch year adults, and the breeding status of 
the birds was consistent between sites. Furthermore, while data 
on diet differences among sites were not available, all sampled 
birds were in good condition, so food limitation is not likely to 
be a factor.

Exposure to other environmental stressors could also poten-
tially impact the number of DMRs (Sepers et al. 2023). We are 
not aware of any differences in any of these factors among sites, 
but it is possible that the observed methylation patterns could be 
the result of a stress response to these factors (Baltazar- Soares 
et al. 2024; Hu and Barrett 2017; Lämke and Bäurle 2017), rather 
than directly caused by PAC exposure history. Future studies 
could consider leveraging detailed knowledge of genetic and en-
vironmental variability among the populations and sites to help 
isolate the impacts of PACs from other factors. Furthermore, it 
remains unclear whether shared DMRs associated with different 
sites have a functional role in gene expression responses. In the 
future, studies leveraging both transcriptomic and methylome 
analyses will be important for uncovering these relationships.

Functional impacts associated with PAC exposure have 
been observed in previous studies in humans (Ünlü Endirlik 
et al. 2023), laboratory animals (Billiard et al. 2002), and wild-
life species (Willett et  al.  1997; Woo  2022), including birds 
(Perez- Umphrey et  al.  2018). For example, a study on sander-
lings (Calidris alba; Bianchini et al. 2021) found that exposure 
to PACs reduced the expression of liver basic fatty acid binding 
protein 1 (Lbfabp) and hepatic lipase (Lipc), suggesting that ex-
posure to PACs could hinder the processing of fatty acids, poten-
tially leading to delayed migration departure timing (Bianchini 
and Morrissey 2018), which is vital for long- distance migratory 
birds. Similarly, studies have shown that exposure to PACs can 
lead to the induction of specific genes, such as CYP1A (nestling 
herring gull Larus argentatus, Lee et al. 1985; chicken embryo, 
Lee et al. 1986; herring gull, Peakall et al. 1989), which plays an 
important role in PAC metabolism and serves as a recognized 
and widely used measure of both PAC exposure and the molecu-
lar effects of PACs (Jönsson et al. 2011; Lara- Jacobo et al. 2019). 
Among the DMRs that we identified in this study which are 
shared across PAC- affected sites, we identified 25 that overlap 
with annotated genes (Tables  S12–S14). Among the subset of 
these genes that have ontology information available, two loci 
stand out as being likely candidates for having functionally im-
portant consequences due to their association with Circadian 
Clock pathways (Belinky et  al.  2015). The protein encoded 
by the SLC25A10 (Solute Carrier Family 25 Member 10) gene, 
which overlaps with DMRs shared between the SHIP and SPILL 
sites, can bind to the protein encoded by the CLOCK (Circadian 
Locomotor Output Cycles Kaput) gene. The CLOCK gene regu-
lates the core circadian oscillator, influencing circadian and cir-
cannual rhythms (Bazzi et al. 2016; Panda et al. 2002), and has 
been linked to migration timing (Bazzi et al. 2017). Additionally, 
CLOCK has been shown to regulate SLC25A10 to maintain glu-
cose metabolism homeostasis (Cai et al. 2019), and suppression 
of SLC25A10 represses de novo fatty acid synthesis (Mizuarai 
et  al.  2005). The Tgs1 (Trimethylguanosine Synthase 1) gene, 
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overlapping with DMRs shared across all three PAC- exposed 
sites, has been associated with reduced body weight gain and 
lipid accumulation when downregulated (Edwin et  al.  2024). 
Thus, it is possible that changes to methylation due to PAC 
exposure could influence migration timing directly via the 
SLC25A10 gene or indirectly via the SLC25A10 and Tgs1 genes 
by lengthening the time required for fueling because of reduced 
lipid accumulation and impaired glucose metabolism. We also 
performed GO term enrichment analysis but found no results 
due to the limited number of genes with ontology annotation. 
Greater understanding of the functional links between methyl-
ation changes and the expression levels of PAC- associated genes 
is an important issue for further study and will hopefully be fa-
cilitated by the development of a chromosome level annotated 
reference genome in black guillemot.

The timescale of epigenetic responses to environmental per-
turbations in wild populations is poorly understood (Angers 
et al. 2020; Tian and Marsit 2018). In this study, we analyzed 
two sites, where wild black guillemots have experienced pollu-
tion from similar LMW PACs types but with different exposure 
histories. At SPILL, the population experienced an acute expo-
sure of 3000 L of crude oil spilled into the water. In contrast, at 
SHIP, shipping traffic has been steadily increasing over the last 
30 years with the opening of new shipping lanes (Oceans North 
Canada  2016; Pizzolato et  al.  2014). While the general meth-
ylation difference relative to the reference site was remark-
ably similar between these two sites (97% and 97% of DMRs 
showing hypermethylation, respectively), we found 1.8 times 
as many DMRs at SPILL as at SHIP (878 vs. 539). This suggests 
that the acute PAC exposure caused by the oil spill might have 
led to a more widespread genomic response than that occur-
ring at SHIP, where exposure to the 16 USEPA priority PACs 
was lower, and overall PAC exposure has been more gradual. 
Future temporal sampling will help to establish whether the 
broad genomic response we have observed at SPILL imme-
diately following the oil spill might diminish to match SHIP 
more closely, or if the number of DMRs at SHIP will rise with 
further increases to shipping traffic and concomitant exposure 
to elevated PAC levels.

In this study, we explored the link between environmental oil 
exposure and methylation patterns in wild seabirds. We iden-
tified a core set of DMRs associated with oil exposure in black 
guillemot. In addition, we found evidence that varying compo-
sition of oil contaminants and length of exposure were associ-
ated with differences in methylation patterns. Development of 
a reference genome would allow for further functional analysis 
in future studies that could provide insights into the mecha-
nisms underlying the observed epigenetic responses and help to 
disentangle the effects of oil pollution and other environmen-
tal stressors. Nonetheless, the loci identified here provide good 
candidates for further research investigating the functional role 
of DNA methylation in response to anthropogenic oil pollution.
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