
Viewpoint

Using herbarium collections to
study genetic responses to global
change

Summary

Earth’s c. 406 million herbarium specimens represent a largely

untapped resource of genetic data that could transform our

understanding of global plant populations. Advances in DNA

sequencing have made the extraction of genetic data from these

preserved specimens increasingly feasible, enabling new insights

into plant biodiversity and evolutionary dynamics. However,

researchers have only begun to leverage these historical genomes,

and the vast majority of this resource remains unexplored. In this

viewpoint, we discuss how herbarium collections can be used to

study the genetic responses of plant populations to global change.

Several promising areas of research include using herbaria for

genetic monitoring, studying local extinction dynamics, identifying

targets of selection under environmental change, and validating

genomic predictions through hindcasting. Herbarium collections

represent a unique and underutilized resource, the mobilization of

which has the potential to enhance our understanding of plant

responses to global change and inform conservation efforts.

Herbarium collections as treasure troves of
genetic data

Over the past half-millennium, humans have collected, preserved,
and stored over 406 million plant specimens that, together with
other natural history collections, represent the largest biodiversity
dataset on Earth (Page et al., 2015). Increasingly, researchers are
turning towards these historical collections as a source of irreplicable
biodiversity data (Meineke et al., 2018): including historical
species occurrence records (Calinger, 2015), functional traits
(Heberling, 2022), biotic interactions (Meineke & Davies, 2018),
and genomes (Pont et al., 2019). As accessibility to these collections
has grown, so too has their utility in studying how biodiversity is
responding to global change (Meineke et al., 2018; Lang
et al., 2019). One promising area of research focuses on leveraging
the genomes housed in herbarium collections (Bieker & Mar-
tin, 2018; Burbano & Gutaker, 2023; Davis & Knapp, 2025) to
study genetic responses to global change: however, relatively few
studies have explored their potential applications in this domain,
leaving their ability to supply genetic data largely unrealized.

Historically, the challenge of generating genetic data from
herbarium specimens was in DNA extraction and sequencing, as
the DNA can be highly degraded and fragmented (Staats
et al., 2011). However, recent advances in technologies and
workflows have made this process more feasible, more effective,
and less expensive (Gutaker & Burbano, 2017; Bieker &
Martin, 2018; Kistler et al., 2020). While the extraction of DNA
from herbarium specimens was possible decades ago, these
advances have enabled genetic analysis of greater numbers of
specimens across deeper time scales and with a diversity of
sequencing approaches, including whole-genome sequencing
(Staats et al., 2013; Olofsson et al., 2016; Exposito-Alonso
et al., 2018), targeted sequencing (Hart et al., 2016; S�anchez
Barreiro et al., 2017; Lang et al., 2020), and SNP genotyping
(Vandepitte et al., 2014; Nygaard et al., 2022).

An additional challenge in working with genetic data from
herbarium collections lies in aggregating individual specimens into
study designs suitable for testing eco-evolutionary hypotheses.
Traditionally, herbarium collections were primarily collected for
taxonomic inventories and species descriptions (Heberling &
Isaac, 2017), meaning collections of many individuals of the same
species from the same site at the same time are relatively
uncommon; unfortunately, this is exactly the sampling effort
required for most population genetic analyses. However, several
recent studies have overcome this challenge by clustering specimens
together in space and time to represent historical populations, often
aggregating specimens from multiple institutions (e.g. Nygaard
et al., 2022; Viveiros-Moniz et al., 2025). Given the sheer size of
herbarium collections, it is likely this approach would be effective
for many species, particularly in well-sampled regions, yet the
extent to which this is possible remains unclear. Promisingly,
the ongoing digitization of herbarium collections will enhance our
understanding of the temporal and spatial distribution of
specimens, making this approach increasingly feasible.

To guide future research in light of these advancements, we
discuss several areas of research for which herbarium specimens can
offer unique insights, including genetic monitoring, studying local
extinction dynamics, identifying targets of selection, and validating
genomic predictions. Novel insights in these areas could transform
our knowledge of how plant populations are coping with global
change and help inform conservation measures and policy
decisions.

Impacts of global change on genetic variation

Climate change, habitat fragmentation, pollution, and other
human impacts on the environment are expected to have significant
effects on population-level genetic variation (Aitken et al., 2008)
and recent studies suggest these effects are widespread (Shaw
et al., 2025). Due to the relationship between metrics of genetic
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variation and population health (Booy et al., 2000; Reed &
Frankham, 2003), monitoring genetic change is increasingly
considered central to biodiversity monitoring and conservation
programs (DeWoody et al., 2021; Convention on Biological
Diversity, 2022). While many metrics can be used to measure
changes in genetic variation, four variables have been proposed as
genetic Essential Biodiversity Variables: genetic diversity, genetic
differentiation, inbreeding, and effective population size (Hoban
et al., 2022). We generally expect that all these metrics can be
affected by human impacts on the environment. For instance,
habitat loss and environmental change can cause population
declines, lowering effective population sizes and genetic diversity,
and increasing the level of inbreeding (Pauls et al., 2013). Habitat
fragmentation can exacerbate the problem, decreasing gene flow
between populations (increasing genetic differentiation), further
reducing genetic diversity and increasing the level of inbreeding
(Young et al., 1996). While there is mounting evidence of
anthropogenic impacts on population-level genetic variation
(Vranckx et al., 2012; Gonz�alez et al., 2020), available data often
lack the temporal scale required to confidently detect and attribute
genetic change. More fundamentally, genetic data only exist for a
small fraction of species, with severe taxonomic and spatial biases in
our knowledge (Leigh et al., 2021). To understand the genetic
changes that are occurring in natural populations, we need more
genetic data across greater taxonomic, spatial, and temporal scales –
to this end, herbaria and their collections could offer (part of) the
solution.

Measuring changes in metrics of genetic variation

Herbarium specimens offer a valuable opportunity to broaden the
temporal scale of genetic data. This is particularly important for
studies of global change as we often lack historical baselines that
predate contemporary climate change and other human impacts
(Lang et al., 2019). Quantifying genetic diversity and related
metrics from herbarium specimens can provide those historical
baselines and allow us to directly measure temporal change
(D�ıez-del-Molino et al., 2018). This is directly relevant to
conservation as detecting changes in genetic metrics is more
informative than merely quantifying contemporary values; for

example, a population that has seen recent declines is likely at
greater risk than one that has remained small for many generations
(Kohn et al., 2006).

Viveiros-Moniz et al. (2025) propose two approaches to using
herbarium specimens to measure changes in genetic diversity. The
first approach aggregates specimens from the same location and
time point into historical populations. When specimens do not
cluster neatly into discrete populations, the second approach
regresses individual-level metrics of genetic variation (e.g. observed
heterozygosity) against time and other relevant predictors (e.g.
altitude; see Fig. 1b).While the latter approachmay bemorewidely
applicable due to more lenient sample requirements, the former
allows for more accurate estimation of a greater range of metrics as
well as the estimation of confidence intervals (e.g. Fig. 1a) and thus
is preferable whenever possible.

A few studies have already used herbarium specimens to estimate
historical metrics of genetic variation and temporal changes. For
example, Nygaard et al. (2022) implement both of the approaches
described above, with genotyping data from herbarium specimens
dating back to 1820 to track temporal changes in genetic diversity
and differentiation in northern dragonhead (Dracocephalum
ruyschiana), a species experiencing severe population declines in
Norway. By aggregating specimens into historical populations,
they show variable temporal trends in expected heterozygosity
across populations, with no clear global trend (Fig. 1a). Studies like
that of Nygaard et al. demonstrate the utility of herbarium
specimens for investigating genetic change over long time scales.
Choice taxa to prioritize may include ecologically significant
species, species that sustain human livelihoods (Pironon et al.,
2024; Obiar et al., 2025), or those that are imperilled or predicted
to be threatened but lack proper assessment (Bachman et al., 2024).

Genetic signals of extinction

A unique application of genetic data from historical collections is
the potential to quantify changes in genetic variation preceding
local extinction (Albani Rocchetti et al., 2021). For example, recent
work by Rosche et al. (2022) used herbarium specimens to unveil
population-level genetic signatures of local extinction in a
subspecies of Biscutella laevigata, a flowering perennial herb found

Fig. 1 Using herbarium specimens to estimate
historical metrics of genetic variation. (a)
Nygaard et al. (2022) aggregated specimens into
both historical and modern populations in
multiple locations (different colors) and estimated
expected heterozygosity. Note that some
populations were excluded from the original
dataset for clarity. (b) Rosche et al. (2022)
regressed observed heterozygosity of individual
specimens against time in both extant (light and
dark grey) and extinct (red) populations.
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across much of central Europe. Using 81 herbarium specimens
from both extant and extinct populations (the status of which they
confirmed by revisiting collection sites), they were able to quantify
the genetic trends of populations through time to assess which of
these trends led to extinction events and estimate the consequences
of those extinction events on species-wide genetic diversity. Their
analysis revealed that while past extinction events did not impact
species-widemean genetic diversity, they did lead to the irreversible
loss of specific genetic clusters. In one population, they observed a
significant decrease in Observed Heterozygosity (Ho) over time
preceding extinction, and no significant trend in Ho in the
populations that persisted (Fig. 1b), suggesting that this metric can
indeed be indicative of population decline and impending
extinction.

This study by Rosche et al. (2022) is one of the first of its kind to
track the population genetic signatures that precede local extinction
and potentially indicate or contribute to extinction risk. Promis-
ingly, their methodology of identifying populations in the
herbarium record and using field surveys to determine contem-
porary persistence or population size should be widely applicable.
This is of increasing importance asmetrics like genetic diversity and
effective population size are beginning to be adopted into
conservation policy and decision making, with the intent of
predicting and tracking extinction risk (Convention on Biological
Diversity, 2022). However, the relationship between these
commonly used genetic metrics and extinction risk seems to be
weakly predictive and highly variable across taxa (Teixeira &
Huber, 2021; Schmidt et al., 2023). Recently, more nuanced
metrics have been proposed to more accurately assess and predict
population genomic health (Bosse & van Loon, 2022; Chung
et al., 2023). For example, quantifying runs of homozygosity
(ROHs) might be a better indicator of the cost of inbreeding
depression than simple inbreeding coefficients (Kardos et al., 2016;
Ceballos et al., 2018). Similarly, quantifying the number of
deleterious mutations (mutational load) might better capture the
mechanisms that plague small populations compared to assessing
population size alone (Bosse & van Loon, 2022; Dussex
et al., 2023). However, the association between extinction risk
and even these more tailored metrics remains largely up for debate
(van der Valk et al., 2019; Grossen et al., 2020; von Seth
et al., 2021). Herbarium specimens could offer much needed
empirical tests of whether changes in genetic metrics accurately
predict local extinction. These types of studies would also permit
testing whether particular alleles are associated with population
extinction or persistence, potentially uncovering alleles beneficial
to coping with global change. As our understanding of the genetic
signatures of extinction grows, genetic monitoring programs will
benefit from broader knowledge of the genetic processes and
indicators that foreshadow impending extinctions and subsequent
biodiversity loss.

Adaptive responses to global change

Humans are imposing myriad selective pressures upon plant
populations (Jump & Pe~nuelas, 2005; Parmesan, 2006). Beyond
exploring how these human impacts might alter metrics of genetic

variation, herbarium specimens also offer the opportunity to study
putative adaptive responses to global change. Indeed, herbarium
specimens are already being widely used to document phenotypic
changes in plant populations in response to these selective
pressures. For example, specimens have been used to document
changes in plant phenology (Primack et al., 2004; Panchen
et al., 2012; Everill et al., 2014; Davis et al., 2015), morphology
(Guerin et al., 2012; Leger, 2013), and physiology (McLauchlan
et al., 2010; Bonal et al., 2011; DeLeo et al., 2020) in response to
climate change. With the increasing feasibility of obtaining
high-quality genetic data from herbarium specimens, these
collections also offer the opportunity to study adaptive responses
at the genetic level, thereby making it possible to distinguish
between genetic evolutionary change and plastic phenotypic
responses (Parmesan, 2006). Additionally, exploring signatures
of selection at the genetic level can elucidate selection on
phenotypes that are not commonly measured, potentially
uncovering selection on previously neglected traits. Finally, while
the genetic basis of phenotypic traits can be studied using
contemporary specimens, the genes that contribute to contempor-
ary variation may not be the same genes that have experienced
historical selection and contributed to historical changes
(Shaw, 2019), providing another reason to quantify historical
changes at the genetic level.

Identifying signatures of selection

The field of evolutionary genetics has developedmanymethods for
identifying signatures of selection from genetic data, and several
studies have already deployed these methods with data from
herbarium specimens to document the genetic basis of adaptation
to environmental change. For example, Lang et al. (2024) tracked
genotypic changes at 24 genes linked to stomatal development in
Arabidopsis thaliana to show that the commonly observed decrease
in stomatal density due to climate change does indeed have a
significant genetic basis (rather than being purely plastic). Kreiner
et al. (2022) contrasted contemporary populations of Amaranthus
tuberculatus in agricultural vs natural habitats to identify genes
associated with adaptation to agricultural land use and then
quantified historical selection on these genes using herbarium
specimens (Fig. 2). Similarly, Vandepitte et al. (2014) contrasted
contemporary populations between the native and invasive ranges
of Sisymbrium austriacum (subsp. chrysanthum) and genotyped
herbarium specimens to identify selection on genes related to
flowering time during the early phases of range expansion. A few
studies have even directly contrasted historical and contemporary
samples to identify targets of selection. For instance, Bieker
et al. (2022) used this method to find genes under selection during
range expansion in the invasive Ambrosia artemisiifolia. Similarly,
Gutaker et al. (2019) sequenced historical potato (Solanum
tuberosum) specimens to identify alleles adapted to longer days
and shorter growing seasons following introduction to Europe.

The methods used in these studies can be broadly applied to
identify adaptive responses to global change. While contrasts
between historical and contemporary populations (as in Gutaker
et al., 2019; Bieker et al., 2022) offer the most direct method of
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identifying targets of selection (similar to evolve and resequence
experiments; Long et al., 2015), this is best suited to whole-genome
(or otherwise very dense) sequence data, which can be challenging
to generate fromhistorical specimens. Alternatively, researchers can
use appropriate contrasts between contemporary populations to
identify putative targets of selection and then test for change in
allele frequencies at these specific genomic regions in herbarium
specimens (Kreiner et al., 2022; Fig. 2). Finally, researchers can
exploit our growing understanding of the genetic basis of plant
phenotypes to select genes or gene families to target. Identifying the
genes that contribute to adaptation is a major goal in evolutionary
biology (Stinchcombe & Hoekstra, 2008; Bomblies & Pei-
chel, 2022; Lasky et al., 2023) and is paramount in understanding
the past, current, and future adaptive potential of plant populations
(Anderson et al., 2011; Anderson & Song, 2020).

Historically validating genomic predictions

In addition to studying historical adaptation to global change,
herbarium collections also offer an opportunity to validate our
predictions of future adaptive responses. Increasingly,
genotype-environment associations (GEAs) are being used to

predict adaptation or maladaptation to future climatic conditions
(Capblancq et al., 2020a). In this field, researchers identify genes or
gene families putatively involved in local adaptation to climate by
correlating allele frequencies with contemporary climatic variables
(Coop et al., 2010;Hoban et al., 2016). These associations are then
modeled in combination with future climate variables to predict
shifts in allele frequencies, and thus the deviance between the
genetic composition at contemporary time and the optimal
composition in the future, termed ‘genetic offset’ (Fitzpatrick &
Keller, 2015; Capblancq et al., 2020a). This approach has enabled
research in long-lived species (e.g. trees) for which field and
glasshouse experiments are less feasible (Rellstab et al., 2016;
Capblancq et al., 2020b). At its core however, genomic prediction
of allele frequencies is essentially hypotheses, and few studies have
validated whether predicted shifts coincide with observed allele
frequency change (Lasky et al., 2023; Lind & Lotterhos, 2024).

Herbarium specimens can offer historical genetic data to validate
genomic predictions to climate change (as briefly noted by
Capblancq et al., 2020a; Rellstab et al., 2021). In essence,
researchers could use contemporary associations between allele
frequencies and climate to predict allele frequencies in historical
climates (rather than future climates as per usual). These

Fig. 2 Measuring historical selection, adapted from Kreiner et al. (2022). Kreiner et al. contrasted contemporary populations of Amaranthus tuberculatus

in agricultural vs natural habitats to identify alleles associated with agricultural habitats via a genome scan. Using herbarium specimens, they tracked
historical allele frequency changes at these loci in both habitat types, finding that they increased significantly and rapidly in agricultural habitats, with
slower changes in natural habitats (likely driven by gene flow rather than selection). They estimated the strength of selection on these alleles in both
habitats to confirm that they are under positive selection in agricultural habitats.
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predictions can then be validated by sequencing historical
populations through herbarium specimens and assessing the extent
to which these models accurately hindcast allele frequency change.
At this time, we could not find any studies that have yet validated
genomic predictions using historical specimens. However, this
approach would grant novel insight into the potential accuracy of
future predictions, offering a powerful method of validation for the
field of GEAs and shedding new light on the predictability of
evolution more generally.

Importance of digitization

As of 2023, only c. 21% of the Earth’s herbarium specimens were
digitized (Thiers, 2025). When it comes to the ability of these
collections to supply genetic data, digitization is a critical step in
increasing their accessibility and usefulness to researchers. Indeed,
all the study designs discussed in this viewpoint require knowledge
of the available specimens, their collection dates, and an accurate
geolocation. Previous work has showcased how mass digitization
could dramatically enhance the power and scope of our research –
for example, the digitization of regional collections (e.g. all the
specimens housed in Canadian institutions) could quintuple our
ability to build statistical models to estimate geographic ranges
(Eckert et al., 2024). Likewise, we expect that the complete
digitization of Earth’s remaining herbarium specimens would
vastly increase the number of historical populations represented in
the herbarium record, making it feasible to estimate
population-level genetic metrics across greater taxonomic, spatial,
and temporal scales. That said, digitization alone is unlikely to
alleviate the spatial, taxonomic, phylogenetic, and functional biases
that have been identified in herbarium collections (Daru &
Rodriguez, 2023; Eckert et al., 2024). These biases must be
acknowledged in studies that use herbarium collections, including
those generating genetic data, and contemporary efforts should be
made to fill these gaps.

As the study of global change increasingly turns toward herbarium
specimens as sources ofmorphological, functional, andgenomicdata
– compiling these additional layers of data and metadata into
standardized and digitally accessible extended specimens (Web-
ster, 2018; Lendemer et al., 2020) will be critical for realizing the
full potential of herbaria and their collections. The growing utility of
these extended specimens to global change research has prompted
calls for an open access globalmeta-herbarium to enable data sharing
and facilitate research (Davis, 2023). As individual studies employ
herbarium specimens to investigate genetic change, researchers can
contribute to these extended specimens by carefully standardizing
and archiving the genetic data and metadata generated from each
specimen. This step is critical for ensuring the utility of genetic data
beyond its original study, including connecting genotypes to
phenotypes that can be collected directly from digitized specimens,
such as automatedmeasures of phenology andmorphology (Besnard
et al., 2018; Ahlstrand et al., 2025). Generally, poor data and
metadata archiving remain major obstacles in our understanding of
global genetic variation (Pope et al., 2015; Toczydlowski et al., 2021)
– as such, we point readers to Leigh et al. (2024) for best practices in
genetic data archiving.

Ethical considerations for working with herbarium
specimens

While the mobilization of data from herbarium collections is and
will continue to be transformative for biodiversity research,
working with this data requires specific considerations. Globally,
herbaria and their collections are a reflection of humanity’s history
of colonialism and conquest, such that the majority of specimens
representing some of the most biodiverse ecosystems in the global
south are often housed in institutions situated in the global north
(Park et al., 2023). Acknowledging the colonial legacy still present
in our collections is a critical first step towards a more inclusive and
equitable global herbarium. We encourage researchers from the
global north to consider these implications when conducting their
research, andwhen possible, to consult those with local expertise on
the focal plant populations and integrate their advice and
knowledge into study designs. In addition to greater access to
herbaria and their specimens, the global north also possesses greater
access to genetic technologies and resources, and we encourage
researchers to consider how the benefits of these resources can be
shared equitably, in line with the Convention on Biological
Diversity’s Nagoya Protocol (Buck & Hamilton, 2011).

Additionally, herbarium collections represent a vast but limited
resource, and the research discussed in this viewpoint requires
destructive sampling of specimens (i.e. tissue sampling for DNA
extraction). Given the colonial legacy of herbarium collections and
the limitednumber of historical specimens,we implore researchers to
consider how they can effectively and ethically use herbarium
specimens and point readers to Davis et al. (2024) for best practices
for both users and stewards. Recommendations include not relying
on herbaria as a substitute for fieldwork, confirming specimen
identification before sampling, avoiding sampling small collections
and type specimens when possible, only sampling the amount of
tissue needed for analysis, annotating the specimen after sampling,
and archiving all generated data in open access repositories. This final
step increases the utility of the data produced through destructive
sampling and can prevent the need for further destructive sampling.
As the value of herbaria and their collections continues to increase,
the equitable and ethical use of herbarium specimens is necessary to
preserve this resource for future generations.

Conclusions

Humanity’s persistent curiosity about the natural world has
produced a vast trove of historical specimens, the true value of
which was largely unbeknownst to the numerous collectors and
naturalists who amassed the bulk of these collections. Now, these
collections represent an invaluable source of biodiversity data.
Indeed, herbarium specimens offer a unique opportunity to explore
changes in historical genetic variation amid the ongoing era of
global change (Meineke et al., 2018; Lang et al., 2019). Here, we
highlight several exciting areas of research for which herbarium
collections can offer unique insights, though the utility of genetic
data obtained from herbarium specimens extends far beyond the
applications discussed in this paper (Bieker &Martin, 2018; Lang
et al., 2019; Burbano & Gutaker, 2023). As digitization continues
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and sequencing technologies and bioinformatic workflows
improve, the genetic data housed in Earth’s vast natural history
collections will become increasingly accessible, unlocking the true
potential of this invaluable resource.
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