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Abstract 1 

Bacterial populations evolve rapidly in the lab when faced with experimentally-applied selective 2 
pressures. Yet how bacteria evolve in nature, in more complex multi-species communities, is both 3 
challenging to study and essential to our understanding of ecosystem responses to rapid 4 
anthropogenic change. It has been theorized that selection purges within-species diversity in 5 
genome-wide selective sweeps, but the prevalence of such sweeps in response to known selective 6 
pressures in nature remains unclear. To track bacterial evolution in a semi-natural context, we 7 
applied Roundup, a glyphosate-based herbicide (GBH) as a selective pressure to 1000 L ponds 8 
containing bacterioplankton communities from a pristine lake. Using metagenomic analyses, we 9 
found that GBH treatment substantially affected community diversity, reducing species richness 10 
twofold, but did not consistently purge within-species genetic diversity over the four weeks of the 11 
experiment. We identified several functional categories of genes targeted by GBH selection across 12 
11 different species of bacteria. There was no evidence for selection on the enzyme targeted by 13 
glyphosate, which interferes with amino acid synthesis; however genes involved more broadly in 14 
amino acid transport and metabolism were more likely to experience changes in allele frequency, 15 
particularly in inferred GBH-sensitive species. Together, these results show how environmental 16 
change can rapidly affect bacterial community structure while leaving within-species diversity 17 
largely intact. Even without evident genome-wide selective sweeps, we identify consistent genetic 18 
targets of selection, pointing to alternative mechanisms of GBH resistance in nature, and 19 
suggesting a role for soft or gene-specific selective sweeps in adaptation. 20 
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Introduction 21 

Microbial communities and the populations within them form the foundation of all ecosystems on 22 

Earth (1). Many studies have focused on how natural microbial communities change on an 23 

ecological level, with species changing in abundance in response to perturbations from 24 

environmental stressors (2–6). It is becoming increasingly evident that microbial populations 25 

within communities can also evolve on the same time scales as these ecological changes (7–9). 26 

Rapid evolutionary change, for example of pathogens within infected patients, can have 27 

consequences for virulence and disease persistence (10–13). More generally, within-species 28 

diversity is important for the functioning and stability of bacterial communities (14–16). For 29 

example, evolutionary diversification of a focal species can impact relative abundances of other 30 

species within the community (17). Conversely, higher community diversity may promote or 31 

constrain the diversification of species within a community (18). In the human gut, community 32 

diversity promotes within-species diversity over time scales of a few months (“diversity begets 33 

diversity”), until niches are filled (8). In other more diverse communities such as freshwater, 34 

sediments, and soil microbiomes, the “diversity begets diversity” effect is negligible, presumably 35 

because most niches are already filled (19). Similarly, natural compost communities challenged 36 

with copper stress showed independent evolutionary and ecological changes, with no detectable 37 

interaction between the two (7). In all cases, ecological and evolutionary changes within microbial 38 

communities, along with the interactions in some cases, are expected to affect ecosystems 39 

functions. 40 

What types of evolutionary changes can occur within a community? Under the stable ecotype 41 

model, selection on adaptive mutations can result in a genome-wide selective sweep, in which a 42 

genome with an adaptive allele expands clonally (with relatively little recombination) and purges 43 

genetic diversity from the population (20–22). Alternatively, if recombination is high, an adaptive 44 

allele can be exchanged by horizontal gene transfer and spread through the population in a gene-45 

specific sweep, purging diversity in a region of the genome while maintaining genome-wide 46 

diversity (23, 24). Or, if an adaptive allele is originally present in the population on multiple 47 

genetic backgrounds, then, during a sweep, multiple strains carrying the adaptive allele may 48 

increase in frequency, resulting in a soft sweep (25). Both soft and gene-specific selective sweeps 49 

allow specific genes targeted by selection to adapt without purging diversity genome-wide. They 50 
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differ in that soft sweeps occur when recurrent adaptive mutations occur on different genomic 51 

backgrounds (lineages or strains) while gene-specific sweeps require high rates of recombination 52 

relative to selection. 53 

In nature, there has been little evidence for pervasive genome-wide selective sweeps. Even in 54 

simplified laboratory evolution experiments where genome-wide selective sweeps are theorized to 55 

be more likely, diversity is often maintained in the population by diverse genetic targets of 56 

selection and clonal interference (26, 27). In natural environments such as the human gut, high 57 

rates of recombination allow for the exchange of genes within and between species (28, 29), 58 

potentially promoting gene-specific rather than genome-wide sweeps (30). Studies of natural 59 

populations of bacteria in freshwater lakes have identified evolutionary patterns consistent with 60 

sweeps, but it remains unclear if these were driven by selection or genetic drift. Bendall et al. (31) 61 

observed a gradual loss in diversity over nine years in one population of bacteria, consistent with 62 

a genome-wide sweep, as well as other populations with low diversity in small genomic regions, 63 

consistent with past gene-specific sweeps. More recently, Rower et al. (32) quantified changes in 64 

species abundance and diversity throughout a 20-year time series and identified an association 65 

with seasonal changes, as well as one possible soft sweep in Nanopelagicus. While these studies 66 

suggest that selective sweeps are occurring in natural bacterioplankton populations, neither could 67 

attribute sweeps to a known selective pressure.  68 

Agrochemical pollution is an important selective pressure relevant to soil and aquatic microbial 69 

communities. There is growing concern over agrochemicals entering freshwater from runoff and 70 

leaching from agricultural land (33). Glyphosate-based herbicides (GBHs) are the most commonly 71 

used herbicides worldwide, and while the active ingredient glyphosate is thought to strongly bind 72 

to soil (34), it may also run off into rivers, streams, and lakes. Regulations in Canada limit the 73 

concentration of glyphosate permitted for chronic (< 800 µg/L) and acute (< 27000 µg/L) aquatic 74 

contamination (34). However, these guidelines are based on toxicity to eukaryotes, and ignore 75 

potential effects on bacteria. Previous studies have shown GBH alters the composition of bacterial 76 

communities in water (2) and honeybees (5). Further, GBH can cross-select for antibiotic 77 

resistance genes in soil (35) and aquatic (36) communities.  78 

GBHs inhibit plant growth by interfering with the shikimate pathway and preventing downstream 79 

synthesis of essential aromatic amino acids (37). Glyphosate prevents the conversion of shikimate-80 
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3-phosphate (S3P) and phosphoenolpyruvate (PEP) into 5-enolpyruvylshikimate 3-phosphate 81 

(EPSP) by competitively binding EPSP synthase (EPSPS) (38). In addition to plants, the shikimate 82 

pathway is also used by bacteria and some fungi. Bacteria with different EPSPS alleles encoding 83 

specific amino acid changes vary in their resistance to glyphosate, and can be classified as 84 

glyphosate resistant or sensitive based on their EPSPS allele (39). Bacteria can also be resistant to 85 

GBH through other mechanisms, such as exporting glyphosate out of the cell with efflux pumps 86 

(40) or by degrading it (41).  87 

Here, we investigated how aquatic bacteria evolve in a semi-natural community faced with the 88 

GBH Roundup as an experimentally applied selective pressure. We exposed replicate mesocosms 89 

to two pulses of Roundup and sequenced metagenomes at five time points over eight weeks. To 90 

study evolutionary responses to selection imposed by GBH, we focused on 11 bacterial species 91 

(metagenome-assembled genomes; MAGs) present in multiple ponds after four weeks and tracked 92 

their genetic diversity in control and GBH-treated ponds. While we found some evidence for GBH-93 

driven genome-wide selective sweeps in progress, these remained incomplete on the short 94 

timescale of our study and tended not to be repeatable across replicate ponds. We hypothesized 95 

that species predicted to be GBH-sensitive based on their EPSPS allele would be under stronger 96 

selection than GBH-resistant species. Although predicted sensitive and resistant species had no 97 

evident differences in genome-wide diversity after GBH treatment, they have distinct genetic 98 

targets of selection. Particularly in GBH-sensitive species, GBH selected for single nucleotide 99 

variants in genes involved in amino acid transport and metabolism, and for reduced copy number 100 

of genes involved in transcription and translation. Together, our results show how a known 101 

environmental stressor affects community diversity without consistently changing genome-wide 102 

within-species diversity beyond a few specific targets of selection.  103 

Results 104 

Quantifying within-species diversity across experimental treatments 105 

In this experiment we sampled nine 1000 L ponds filled with pristine lake water over eight weeks 106 

to study how natural populations of aquatic bacteria evolve after exposure to Roundup, a 107 

commonly used GBH. Treated ponds received two pulses of GBH (at 15 mg/L and 40 mg/L) 108 

whereas controls received only phosphorus (as a control for the high phosphorus content of 109 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613573doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613573
http://creativecommons.org/licenses/by-nc/4.0/


 

5 

glyphosate) or no treatment. For each of the nine ponds, we co-assembled metagenomic reads from 110 

five time points throughout the 8-week experiment and binned the resulting contigs into 111 

metagenome-assembled genomes (MAGs), yielding a database of 315 non-redundant MAGs, 112 

which we define as distinct species (Methods). To quantify genetic diversity within species, we 113 

competitively mapped reads from each time point to our non-redundant MAG database and 114 

quantified the number and frequency of single nucleotide variants (SNVs) in each MAG in each 115 

experimental pond. We identified 11 MAGs that were present at a minimum of 4x average depth 116 

of coverage in at least one control and one GBH pond in the two samples collected at one and four 117 

weeks after the 15 mg/L GBH pulse (Figure 1). These 11 MAGs had an average size of 3.04 Mbp, 118 

completeness of 87.19%, and redundancy of 2.31% (Table 1). For some MAGs, SNV detection 119 

rates were correlated with MAG coverage (Figure S1). To resolve this bias, we subsampled reads 120 

such that each MAG had an equal coverage across ponds (Methods). The vast majority of these 121 

MAGs (10/11) were at low or undetectable relative abundance at time point 1, then increased at 122 

time point 2 in both control and treatment ponds (Figure S2). This suggests that this subset of 123 

species are well-adapted to the pond environment. 124 

Figure 1. MAGs present in GBH treatment and control ponds after 15 mg/L GBH pulse. 125 
MAGs with a minimum of 4x average sequencing depth in both control and GBH ponds at time 126 
point 2 (merged samples from day 7 and 28). Ponds are coloured by the treatment received. MAGs 127 
are grouped by their predicted sensitivity to GBH based on their EPSPS allele. 128 

 129 
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Table 1. Summary of MAGs analyzed. Predicted sensitivity and resistance to glyphosate are 130 
indicated by (S) and (R) respectively. 131 

Species (MAG) EPSPS Class Completeness (%) Redundancy (%) Size (Mbp) Contigs 

Burkholderiaceae 1 I (S) 100.00 1.41 2.90 150 

Burkholderiaceae 2 I (S) 90.14 2.82 3.11 104 

Verrucomicrobiae I (S) 97.18 1.41 2.61 8 

Flavobacteriales 1 I (S) 94.37 1.41 2.96 139 

Flavobacteriales 2 I (S) 77.46 1.41 2.71 358 

Roseomonas_A II (R) 78.87 5.63 4.23 400 

Prosthecobacter II (R) 88.73 0.00 4.05 321 

Sphingorhabdus_B II (R) 98.59 4.23 2.64 207 

Luteolibacter II (R) 78.87 1.41 3.84 737 

Erythrobacter Unclassified 81.69 4.23 2.46 195 

Bosea sp001713455 Unclassified 73.24 1.41 1.95 501 

If GBH inhibits the growth or viability of some bacterial species, we would expect GBH-treated 132 

ponds to have fewer detectable species (MAGs) present compared to control ponds. We estimated 133 

the species richness of each pond at time point 2 (after the 15 mg/L GBH pulse) by determining 134 

the number of MAGs in our database that were present. Consistent with expectation and with an 135 

earlier study (2), we found that GBH ponds had significantly lower species richness, approximately 136 

two-fold lower than control ponds (Wilcoxon Rank Sum test, U = 0, p = 0.016) (Figure 2A). The 137 

phosphorus control pond had lower richness than other controls, but still higher than any GBH-138 

treated pond (Figure 2A). For most species, there was no evident relationship between within-139 

species diversity and community diversity, with the exception of one Verrucomicrobiae MAG 140 

which showed a positive “diversity begets diversity” relationship (Figure 2B). This suggests that, 141 

on the time scale of our experiment, GBH has a significant effect on community-level diversity, 142 

but this effect is generally independent of within-species diversity.  143 
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 144 

Figure 2. Species richness differs between GBH and control ponds independently of within-145 
species diversity.  The number of species (MAGs) present in each pond at time point 2. A species 146 
was considered present in a pond if the mean coverage was at least 1x and the breadth was > 50%. 147 
(A) Box plot of the number of species (MAGs) detected in each pond. (B) The relationship between 148 
within-species diversity (SNVs/Mbp) and species richness. A linear trendline was plotted for each 149 
MAG. 150 

 151 

Genome-wide selective sweeps are rare, incomplete, and not associated with EPSPS class 152 

To study within-species diversity changes in greater detail, we compared SNV frequencies within 153 

each MAG between GBH and control ponds. If GBH drives genome-wide selective sweeps, this 154 

should result in genome-wide purges of genetic diversity in GBH-treated ponds compared to 155 

control ponds. One MAG, Sphingorhabdus_B, classified as GBH-resistant, was the only species 156 

recovered in ponds both before and after the GBH pulse, allowing us to track genetic diversity 157 

over time. At time point 1, before any pond received GBH, the diversity in the Sphingorhabdus_B 158 

population varied somewhat between the five ponds (402 to 1198 SNVs/Mbp) (Figure 3A & 3B, 159 

Table S1). At time point 2, the diversity in control ponds increased slightly, but much more 160 

dramatically in GBH-treated pond A, reaching nearly 3,000 SNVs/MBp (Figure 3A & 3B). This 161 

increased diversity over time is not expected under a genome-wide selective sweep. Alternatively, 162 

such a pattern could be explained by a soft selective sweep in which beneficial mutations rise to 163 

fixation in multiple different genome backgrounds – for example, selecting for a rare strain with 164 

an adaptive allele to increase in frequency. Consistent with a soft sweep, this GBH pond had over 165 

5000 fixed (reference allele frequency = 0) or nearly fixed substitutions (yellow in Figure 3A, 166 

Table S1) alongside the nearly 3000 polymorphic sites. In the other GBH replicate, 167 
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Sphingorhabdus_B was not recovered at time point 2, suggesting strong selection drove this 168 

species to extinction or below the limit of detection. Sphingorhabdus_B in the GBH A pond 169 

experienced approximately 4x more gene copy number changes over time than control ponds 170 

(Figure S3, Table S2). Further, 91% of genes with a copy number change in GBH A from T1 to 171 

T2 were also identified as having a copy number change between GBH A and control ponds at T2, 172 

compared to an average of 35% overlap among controls. This suggests that GBH is selecting for 173 

gene copy number changes in Sphingorhabdus_B over time. Together, these results suggest that 174 

natural selection imposed by GBH drives changes in genetic diversity over time, consistent with a 175 

soft or gene-specific sweep, or an incomplete genome-wide sweep that might have gone to 176 

completion given more time. 177 

 178 

Figure 3. Temporal diversity changes in Sphingorhabdus_B before and after a GBH pulse. 179 
(A) Each row in the heat map represents a nucleotide position which is polymorphic or fixed on a 180 
non-reference allele in at least one pond. The rows are coloured based on the reference allele 181 
frequency. Reference allele frequency at each genome position is calculated as the proportion of 182 
reads mapping to that site in the reference MAG that match the reference allele. Rows are ordered 183 
by the mean reference allele frequency across all ponds. (B) Total number of polymorphic sites in 184 
the MAG population divided by the MAG genome size (bp) x 106. T1 (time point 1) includes the 185 
sample taken before any GBH pulse was added on day 0. T2 (time point 2) includes two samples 186 
taken after a 15 mg/L GBH pulse on days 7 and 28.  187 
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Although we lacked time series data for the other ten MAGs (which were too rare at T1 to call 188 

SNVs), we were still able to compare within-species diversity in control vs. GBH ponds at T2. Of 189 

these MAGs, none showed unequivocal evidence for a complete and repeatable GBH-driven 190 

genome-wide selective sweep (Figure 4, Figure S3). While in some cases there were differences 191 

in diversity between ponds, all populations contained measurable diversity in both control and 192 

GBH treatment ponds. In one example of a potential genome-wide selective sweep, the 193 

Verrucomicrobiae population had lower diversity in both GBH ponds compared to a control 194 

(Figure 4A & 4B). The Verrucomicrobiae population in the control pond contained 21,438 195 

SNVs/Mbp, which was reduced by almost half in one GBH pond (11,410 SNVs/Mbp) and by over 196 

50-fold in another (373 SNVs/Mbp; Figure 4B, Table S1). This is consistent with a genome-wide 197 

selective sweep in progress, favouring the reference allele. In the Burkholderiaceae 1 population, 198 

diversity was reduced in one replicate GBH pond but not the other (Figure 4B), suggesting a 199 

genome-wide sweep that was not repeatable, or was more rapid in one replicate. Both GBH ponds 200 

had more fixed non-reference alleles or low reference allele frequency SNVs compared to control 201 

ponds, suggesting a replacement of one dominant strain by another (Figure 4A). Similarly, a 202 

potential genome-wide sweep in the Prosthecobacter population only reduced diversity in one 203 

GBH pond compared to controls, resulting in the fixation of non-reference alleles (Figure 4C & 204 

4D). The other GBH pond shared some of these fixed substitutions, but remained more diverse 205 

than either control pond (Figure 4C & 4D).  206 

Overall, the evidence for genome-wide selective sweeps was equivocal. Defining a genome-wide 207 

selective sweep as a reduction in diversity across the genome in one GBH population compared to 208 

the average of the control populations, only 3/11 MAGs showed any evidence of a genome-wide 209 

selective sweep. We further hypothesized that GBH would impose stronger selection on MAGs 210 

predicted to be GBH-sensitive at the beginning of the experiment. We classified MAGs as GBH-211 

sensitive or resistant based on their EPSPS allele. Of the 11 MAGs, five were classified as Class I 212 

(GBH-sensitive), four were classified as Class II (GBH-resistant), and two could not be classified 213 

because the EPSPS gene was not present in the annotation (Figure 1, Table 1). There were no 214 

apparent differences in genetic diversity after the GBH pulse between predicted GBH-sensitive 215 

MAGs (Figure 4A & 4B), resistant MAGs (Figure 4C & 4D), or unclassified MAGs (Figure 216 

S3), none of which showed evidence for complete, repeatable genome-wide selective sweeps 217 

driven by GBH. 218 
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Figure 4. Population diversity of GBH-sensitive and resistant MAGs. (A & C) Each row in 219 
each heat map represents a nucleotide position which is polymorphic or fixed on a non-reference 220 
allele in at least one pond. The bars are coloured based on the reference allele frequency. Reference 221 
allele frequency at each genome position is calculated as the proportion of reads mapping to that 222 
site in the reference MAG that match the reference allele. Rows are ordered by the mean reference 223 
allele frequency across all ponds. (B & D) Total number of polymorphic sites in the MAG 224 
population divided by the MAG genome size (bp) x 106. (A & B) Predicted GBH-sensitive MAGs. 225 
(C & D) Predicted GBH-resistant MAGs. 226 

  227 
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Identifying genetic targets of selection 228 

Regardless of whether genome-wide selective sweeps occur, our data provide the opportunity to 229 

identify the likely genetic targets of GBH selection. It is typically challenging to identify the targets 230 

of selection after a genome-wide sweep, because the targets of selection are genetically linked to 231 

other hitchhiking mutations (42, 43). Our replicated study design alleviates this challenge because 232 

selected mutations could sweep independently in different replicate ponds (although this is not 233 

guaranteed to occur if the exact same genome fixes in replicate ponds). However, classic genome-234 

wide sweeps appear to be rare in our experiment (Figures 4 and S3), and soft or gene-specific 235 

sweeps may be more common – both of which facilitate finding the targets of selection. We used 236 

four different approaches to identify genes targeted by GBH selection: (1) those with large changes 237 

in SNV frequency between GBH and control ponds, (2) those with consistently reduced SNV 238 

density between GBH and control ponds, (3) those with consistently reduced numbers of SNVs 239 

between GBH and control ponds, and (4) those with large changes in gene copy number between 240 

GBH and control ponds (Methods). 241 

In the first approach, we calculated the difference between the mean reference allele frequency at 242 

each nucleotide position in control ponds and GBH ponds. We found that all populations had genes 243 

containing at least one large SNV frequency shift (range of 10 - 1,393 genes per MAG with a shift 244 

in reference allele frequency of 0.5 or more; Table 2, Table S3). Pooled across all MAGs, we 245 

found that these genes with shifts in SNV frequency were significantly enriched in several 246 

functional categories involved in metabolism (COG categories G, E, I, P, and Q; Fisher’s exact 247 

test, p < 0.05, FDR < 0.1; Figure 5). We also found a significant depletion of SNV frequency 248 

changes in genes from categories J (translation, ribosomal structure and biogenesis), K 249 

(transcription), N (cell motility), and X (mobilome). These results point to certain gene functions 250 

consistently targeted by selection across all populations. 251 

  252 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613573doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613573
http://creativecommons.org/licenses/by-nc/4.0/


 

12 

Table 2. Summary of the number of genes identified as targets of selection. Predicted sensitivity 253 
and resistance to glyphosate are indicated by (S) and (R) respectively. 254 

 255 
 256 

Next, we identified genes in GBH-exposed populations with less diversity compared to the rest of 257 

the genome, as expected in a gene targeted by a selective sweep. Nine of the 11 populations had 258 

at least one gene (range of 1 - 107) with a repeatable (parallel across replicate ponds) decrease in 259 

SNV density in each GBH-control comparison (Table 2, Table S4). Further, six of these 260 

populations had at least one gene (range of 2 - 111 genes) with a significant SNV number decrease 261 

in each GBH-control comparison using an existing method (44) which identifies genes with 262 

differential SNV counts between treatments (Table 2, Table S5). These parallel decreases in both 263 

SNV density and number provide strong evidence for selection since they occur repeatedly across 264 

replicates. These genes were enriched in carbohydrate transport and metabolism and intracellular 265 

trafficking, secretion, and vesicular transport (COG categories G and U, Fisher’s exact test, p < 266 

0.05). Even if not significant after multiple hypothesis correction (FDR > 0.1), COG category G 267 

was also enriched in large SNV frequency changes, supporting its importance as a target of GBH 268 

selection (Figure 5).  269 

Species (MAG) 
EPSPS 
Class 

SNV Frequency 
Shift 

Parallel SNV 
Density Decrease 

Parallel SNV 
Number Decrease 

Gene Copy 
Number Increase 

Gene Copy 
Number Decrease 

Burkholderiaceae 1 I (S) 484 2 0 100 137 

Burkholderiaceae 2 I (S) 76 107 7 52 112 

Verrucomicrobiae I (S) 1398 41 111 162 413 

Flavobacteriales 1 I (S) 424 17 2 21 22 

Flavobacteriales 2 I (S) 10 0 0 83 57 

Roseomonas_A II (R) 669 2 3 183 183 

Prosthecobacter II (R) 1025 10 4 80 132 

Sphingorhabdus_B II (R) 1248 1 0 524 1034 

Luteolibacter II (R) 73 85 18 172 140 

Erythrobacter Unclassified 666 0 0 105 108 

Bosea sp001713455 Unclassified 1089 8 0 151 147 
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 270 

Figure 5. Functional categories enriched or depleted for genes identified as targets of 271 
selection. For each method used to identify possible targets of selection, a Fisher’s exact test was 272 
performed for each COG category between genes identified as targets of selection and all other 273 
genes present in the combined MAGs. Bars are coloured by significance and odds ratio ( < 1 = 274 
depleted or > 1 = enriched). Bars outlined in black pass our false discovery rate (FDR) threshold 275 
of < 0.1. COG categories: J = Translation, ribosomal structure and biogenesis, K = Transcription, 276 
L = Replication, recombination, and repair, D = Cell cycle control, cell division, chromosome 277 
partitioning, Y = Nuclear structure, V = Defense mechanisms, T = Signal transduction 278 
mechanisms, M = Cell wall/membrane/envelope biogenesis, N = Cell motility, Z = Cytoskeleton, 279 
W = Extracellular structures, U = Intracellular trafficking, secretion, and vesicular transport, O = 280 
Posttranslational modification, protein turnover, chaperones, C = Energy production and 281 
conversion, G = Carbohydrate transport and metabolism, E = Amino acid transport and 282 
metabolism, F = Nucleotide transport and metabolism, H = Coenzyme transport and metabolism, 283 
I = Lipid transport and metabolism, P = Inorganic ion transport and metabolism, Q = Secondary 284 
metabolites biosynthesis, transport and catabolism, X  = Mobilome: prophages, transposons, R = 285 
General function prediction only, S = Function unknown 286 

 287 

Lastly, we identified genes that differed in copy number between control and GBH ponds. For 288 

each gene, we compared its relative depth of coverage in controls to GBH ponds (Methods). We 289 

found that all populations had genes that increased or decreased by > 0.5 gene copies between 290 

control and GBH ponds (Table 2, Table S6). Genes that decreased in copy number were 291 

significantly enriched in transcription (K) and lipid transport and metabolism (I) and depleted in 292 

signal transduction (T) and cell wall/membrane biogenesis (M) (Figure 5).  293 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613573doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613573
http://creativecommons.org/licenses/by-nc/4.0/


 

14 

Overall, genes involved in metabolism were frequently identified as targets of selection by 294 

different methods, while genes involved in cellular processes and signalling were rarely identified 295 

(Figure 5). Meanwhile, translation and transcription (J and K) tended to decrease in gene copy 296 

number under GBH treatment. Selection on amino acid transport and metabolism, along with 297 

reduced copy number of transcription and translation genes, is mainly driven by MAGs classified 298 

as GBH-sensitive (Figure S4). This could be due to GBH-sensitive species, but not resistant 299 

species, being under selection for changes in amino acid metabolism – which contains the 300 

shikimate pathway targeted by glyphosate. Thus, MAGs with inferred GBH resistance or 301 

sensitivity at the beginning of the experiment may have experienced different genetic targets of 302 

selection. 303 

Discussion 304 

Previous work has shown GBHs like Roundup alter the composition of aquatic bacterial 305 

communities (2, 36). However, how individual bacterial populations within a community evolve 306 

in response to GBH is unknown. More generally, our understanding of microbial evolution in 307 

nature has been hindered by the lack of studies combining experimentally controlled selective 308 

pressures with measures of within-species diversity (evolution) in the context of a diverse 309 

community (45). To fill this gap, we quantified within-species diversity in bacterioplankton 310 

exposed to GBH in controlled setup freshwater mesocosm ponds. We found that genome-wide 311 

selective sweeps were rare and often incomplete over the time scale of the experiment. Rather, all 312 

of the 11 populations studied contained measurable and often substantial genetic diversity (on the 313 

order of hundreds to thousands of SNVs per Mbp, consistent with standing strain-level diversity) 314 

in both GBH-treated and control ponds. Potential selective sweeps in one pond were often not 315 

observed in a replicate pond. This lack of repeatability raises doubt about whether a sweep was 316 

driven by selection or drift. 317 

There are several explanations for the lack of genome-wide selective sweeps documented in this 318 

study, which are not mutually exclusive. First, a four-week time scale might have been too short 319 

to observe sweeps proceeding to completion. One other potential genome-wide sweep documented 320 

in a lake took years to complete (31) so it is plausible that sweeps in natural environments require 321 

much longer to complete than the few dozen generations shown in simplified evolutionary models 322 

(46). Second, it is possible that the community-level response to selection is dominated by species 323 
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sorting, with pre-existing GBH-resistant taxa flourishing and sensitive taxa declining, giving little 324 

opportunity for evolutionary responses within these species. A previous experiment in the same 325 

mesocosm system showed that GBH substantially restructures the bacterioplankton community 326 

and reduces diversity (2), which we confirmed in this study. It is therefore plausible that ecological 327 

responses dominated evolutionary responses in this context and time scale. Third, recombination-328 

driven gene-specific selective sweeps or soft selective sweeps may be more common than genome-329 

wide selective sweeps in our experiment. We detected signals of selection in numerous genes, 330 

including parallel purges of diversity in GBH-treated ponds but not controls. Gene-specific or soft 331 

selective sweeps are plausible mechanisms to explain these patterns. Using short-read 332 

metagenomic data, it is difficult to infer recombination; therefore direct evidence for 333 

recombination-driven gene-specific selective sweeps is lacking. Given the relatively high levels of 334 

within-species standing genetic diversity, which is typical in a natural community, adaptive 335 

mutations could spread on distinct genetic backgrounds (“strains”) in a soft selective sweep, 336 

resulting in the maintenance of diversity without high levels of recombination. Future work using 337 

long-read sequencing or whole genomes from isolated bacteria will be needed to resolve the 338 

relative influence of soft and gene-specific selective sweeps. 339 

Despite the lack of evident genome-wide selective sweeps, we identified genes with consistent 340 

changes in allele frequency or copy number in GBH ponds, consistent with natural selection acting 341 

on specific cellular pathways in multiple species. Glyphosate binds EPSPS and prevents aromatic 342 

amino acid synthesis; we therefore expected natural selection on EPSPS and surrounding amino 343 

acid metabolic pathways. We classified each species as putatively resistant or sensitive to 344 

glyphosate at the beginning of the experiment based on known mutations in the EPSPS gene. We 345 

expected GBH-sensitive populations to be under stronger selection than GBH-resistant 346 

populations, but we did not observe any notable differences in their genome-wide diversity 347 

between treatments. However, we did find evidence that the functional categories of genes under 348 

selection differed between GBH-sensitive and resistant populations. Although aroA, the gene 349 

encoding EPSPS, was not identified as a target of selection in any species, genes involved in amino 350 

acid metabolism (COG category E) were significantly enriched in SNV frequency changes in 351 

response to GBH across all species – an effect that is driven by GBH-sensitive species. This 352 

suggests that amino acid metabolism pathways surrounding EPSPS might be specifically under 353 

selection in species with a GBH-sensitive EPSPS allele. Other GBH-sensitive species might be 354 
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selected for slower growth, as has been observed in B. subtilis facing nutrient starvation (47). As 355 

evidence for this, we found that GBH selected for a decreased copy number of transcription and 356 

translation genes in GBH-sensitive MAGs, but not in GBH-resistant MAGs. Together with 357 

previous findings that GBH selects for multidrug efflux pumps in bacterioplankton communities 358 

(36), our results highlight that targets of selection can be diverse in natural communities, not 359 

always centered on canonical resistance mutations. 360 

Why Prosthecobacter and Sphingorhabdus_B — both GBH-resistant MAGs based on their EPSPS 361 

allele — would be targeted by GBH selection is unclear. The Prosthecobacter population 362 

experienced fixation of many alternate alleles in one GBH replicate but not the other. Such an 363 

inconsistent response suggests the dominance of drift over GBH-driven selection. In 364 

Sphingorhabdus_B where the starting population at time point 1 is known, the number of SNVs 365 

(including many at low frequency) increased along with the number of fixations in one GBH 366 

replicate. One hypothesis is that GBH interferes with the cell in unknown ways, beyond the 367 

canonical EPSPS target. Alternatively, selection on GBH-resistant species could be indirect. For 368 

example, GBH causes shifts in community composition, which could subsequently impose new 369 

selective pressures on these species through competition, cross feeding, or by creating novel niches 370 

(8, 19). Importantly, the potential soft sweep in Sphingorhabdus_B was only observed in one pond, 371 

with the MAG decreasing below the limit of detection in the other pond after the GBH pulse. This 372 

again suggests that stochastic dynamics (drift) could dominate selection in a species close to the 373 

limit of local extinction. 374 

Further research will be needed to quantify selective sweep dynamics over longer time scales, and 375 

for a larger number of taxa. Ten of the MAGs analyzed were present at very low or undetectable 376 

abundances at time point 1, preventing us from tracking changes in diversity over time. This is 377 

unlikely to affect our conclusions regarding genome-wide selective sweeps (or the lack thereof) 378 

because each pond was filled with water from the same lake at the same time, making it improbable 379 

that the initial diversity within each MAG varied substantially across ponds. Nevertheless, 380 

additional time-series – over longer time scales – would provide more robust support for our 381 

conclusions. With bacterial doubling in nature roughly every 1-25 hours (48), the pond populations 382 

likely evolved for approximately 28-700 generations after the GBH pulse. Depending on the 383 

strength of selection, this could be sufficient time to detect changes in allele frequencies (including 384 
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fixation) for fast-growing, but perhaps not slow-growing species. While the 11 populations we 385 

tracked encompass both GBH-sensitive and resistant EPSPS classes, they are far from representing 386 

the full bacterial diversity present in Lac Hertel. Unfortunately, many MAGs that were recovered 387 

in multiple control ponds and time points were absent from GBH ponds after the GBH pulse, which 388 

prevented us from including them in the analysis. This observation is likely due to the selective 389 

pressure imposed by GBH, where MAGs sensitive to GBH drastically decrease in abundance after 390 

the GBH pulse and are not captured at our sequencing depth. While we do not see strong evidence 391 

for complete genome-wide selective sweeps across the 11 populations we tracked, it remains 392 

unknown if sweeps occurred in any of the other 304 populations that were too rare to detect using 393 

our shotgun metagenomic approach.  394 

Our study represents an advance in our understanding of evolution in natural environments. By 395 

applying a known selective pressure to semi-natural communities, we were able to go beyond 396 

documenting sweep-like patterns with unknown causes, and move toward attributing these patterns 397 

to selection. In our limited sample of species, and over short time scales, we can conclude that 398 

genome-wide selective sweeps are rare in response to GBH, a stressor with clear community-level 399 

effects. Even if genome-wide sweeps are rare, we show that GBH imposes selection on several 400 

categories of genes, including those involved in amino acid metabolism, transcription and 401 

translation – particularly in GBH-sensitive species. This highlights the potentially unexpected 402 

evolutionary consequences of agrochemical runoff into freshwater ecosystems. Future work will 403 

be needed to determine if genome-wide selective sweeps are more common in response to different 404 

selective pressures, in rarer taxa, and over longer time scales.  405 

Methods 406 

Experimental design, sampling, and sequencing 407 

In this experiment, nine “ponds” (mesocosms) were filled with approximately 1000L of water 408 

originating from Lac Hertel, a pristine lake with no known prior herbicide or pesticide 409 

contamination, at Gault Nature Reserve in Mont-Saint-Hilaire, Quebec. We sampled the nine 410 

ponds five times over 8-weeks between July 16th, 2021 and September 10th, 2021. Four out of 411 

nine ponds received two pulses of the glyphosate-based herbicide, Roundup, in the form of 412 

Roundup Super Concentrate Grass and Weed Control (reg. no. 22759; Bayer). One control pond 413 
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received a single pulse of phosphorus (K2PO4) to control for Roundup as a phosphorus source (49). 414 

The four remaining control ponds did not receive any treatment. On day 0, the four GBH ponds 415 

received a 15 mg/L GBH pulse and the phosphorus control pond received a 320 μg/L pulse of 416 

phosphorus (K2PO4). On day 28, the four GBH ponds received a 40 mg/L GBH pulse. GBH 417 

concentrations were calculated based on the concentration of glyphosate acid. We collected 1L of 418 

water at five timepoints: day 0 (pre-GBH pulse), 7 & 28 (after 15 mg/L GBH pulse), and 35 & 56 419 

(after 40 mg/L GBH pulse). For each sample, we filtered 250 mL of water through a 0.22µm pore 420 

size polyethersulfone membrane (Sigma-Aldrich) to collect the bacterial community for 421 

metagenomic sequencing. The filters were stored at -80 °C prior to DNA extraction. DNA was 422 

extracted using the DNeasy PowerWater Kit (QIAGEN), libraries were prepared with the 423 

NEBNext Ultra II DNA Library Prep kit (New England Biolabs), and sequenced on an Illumina 424 

NovaSeq6000 S4 v.1.5 with 150bp paired-end reads. 425 

Metagenomic assembly, binning, and classification of metagenome-assembled genomes 426 

(MAGs) 427 

Metagenomic reads were trimmed with trimmomatic v0.39 (50) to remove illumina adapters and 428 

discard low quality reads. Next, we co-assembled metagenomic reads by pond, pooling the five 429 

timepoints for each pond, with MEGAHIT v1.2.9 (51, 52). Following the anvi’o metagenomics 430 

workflow, we used anvi’o v7 (53) to generate a contig database for each pond’s co-assembly, 431 

identify genes with Prodigal v2.6.3 (54), and annotate each database with single copy gene 432 

taxonomy with HMMER (55). Next, metagenomic reads from each timepoint were mapped to the 433 

co-assembly of their corresponding pond with bowtie2 v2.4.4 (56) using default parameters. 434 

Samtools v1.15 (57) was used to convert the SAM output to BAM format and sort and index the 435 

BAM file. We used anvi’o to profile contigs longer than 2500 bp in each pond’s contig database 436 

by calculating coverage and single nucleotide variants across samples using the BAM files. We 437 

created a merged contig profile for each pond and used CONCOCT v1.0.0 (58) to bin contigs 438 

based on nucleotide composition, kmer frequencies, and coverage across samples. This resulted in 439 

1536 bins across the nine ponds. Bins with > 70% completion were manually refined using the 440 

anvi’o interactive interface to remove contigs that were incorrectly binned (53). The 606 bins that 441 

had > 70% completion and < 10% redundancy were considered MAGs and were dereplicated at a 442 

98% average nucleotide identity (ANI) with anvi’o’s dereplication command using fastANI v1.32 443 
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(59) resulting in 315 non-redundant MAGs. Taxonomic classification of MAGs was done using 444 

the Genome Taxonomy Database (GTDB) Release 214 (60) with GTDB-Tk v2.1.0 (61, 62).   445 

Gene prediction, annotation, and SNV calling 446 

We used prodigal v2.6.3 (54) in metagenomic mode to predict protein coding genes in our database 447 

of 315 non-redundant MAGs. Functional annotation of genes was done using eggNOG mapper 448 

v2.1.12 (63, 64) using DIAMOND (65) to align sequences. MAGs with an annotated EPSPS gene 449 

(aroA) were classified as class I (GBH-sensitive) or class II (GBH-resistant) using the online 450 

classifier “EPSPSClass server” (39) which looks for specific amino acid markers within the gene. 451 

Next, metagenomic reads from each timepoint and pond were competitively mapped to our MAG 452 

database using bowtie2 v2.4.4 (56) with default parameters. Mapping outputs were converted to 453 

BAM format and indexed with samtools v1.16.1 (57). To increase the coverage for SNV calling, 454 

BAM files from the two time points after the 15 mg/L GBH pulse (day 7 and day 28) were merged 455 

using samtools v1.16.1 (57) and are henceforth referred to as time point 2. Similarly, the two time 456 

points after the 40 mg/L pulse (day 35 and day 56) were merged and are referred to as time point 457 

3. For each MAG used for further analysis, to control for coverage bias in SNV detection, we 458 

subsampled mapped reads with samtools v1.18 (57) to match the coverage of the lowest coverage 459 

pond. We used inStrain v1.8.0 (66) to identify SNVs in each MAG population at the three time 460 

points. We set a minimum MAPQ of 2 to discard multi-mapped reads, a minimum ANI of reads 461 

mapping to the reference database of 95%, and a minimum position coverage of 5x to call a SNV. 462 

We discarded SNVs within 100 bp of contig edges and SNVs with a position depth greater than 3 463 

times the MAG coverage or less than ⅓ of the MAG coverage. These depth filters remove both 464 

low-coverage regions and high-coverage regions containing likely mismapped reads, using 465 

established cutoffs (8, 67). We further removed SNVs with more than two alternative alleles. The 466 

inStrain command “IS.get(‘covT’)” was used to extract the depth at each position to differentiate 467 

between positions where the reference frequency was 1 (and thus depth at that position was not 468 

reported in the output) and positions with a depth too low to call a SNV (< 5x). 469 

Species richness 470 

To estimate the species richness in each pond after the 15 mg/L GBH pulse, we first subsampled 471 

metagenomic reads from each pond with samtools v1.18 (57) to match the pond with the lowest 472 
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number of reads at time point 2. Next, we used CoverM (68) to estimate the number of MAGs in 473 

our database of 315 MAGs that were present with at least 1X average depth and a 50% breadth of 474 

coverage. We performed a Wilcoxon Rank Sum test in R version 4.3.3 (69) to determine if GBH 475 

treated ponds had lower species richness (number of MAGs present) than control ponds. For each 476 

MAG with at least 4x coverage, we plotted the number of polymorphic sites in that MAG versus 477 

the species richness for each pond the MAG was present in. To determine if higher species richness 478 

in a pond is correlated with higher polymorphic sites within a MAG, we plotted a linear trendline 479 

for each MAG.  480 

Identifying genes with differential shifts in SNV frequency between treatments 481 

We identified genes with large shifts in SNV frequency between GBH and control ponds. For each 482 

SNV, we calculated the mean reference frequency in control ponds and the mean reference 483 

frequency in GBH ponds. We calculated the difference between reference allele frequencies in 484 

control and GBH ponds, and considered as ‘large’ any absolute difference greater or equal to an 485 

arbitrary threshold of 0.5. These SNVs were further filtered to remove SNVs where there was 486 

overlap in the reference allele frequency between control and GBH ponds: if the average GBH 487 

pond reference allele frequency is low compared to controls, all GBH ponds must have a reference 488 

allele frequency lower than all control ponds. This assures that the direction of allele frequency 489 

change is consistent across treatments. Next, we determined which genes contain at least one SNV 490 

with a differential shift of at least 0.5 in SNV frequency between treatments. Note that some of 491 

these genes may contain SNVs with opposing directional shifts. 492 

Identifying genes with a decrease in diversity between treatments 493 

Genes experiencing sweeps are expected to be purged of genetic diversity as an adaptive allele 494 

rises in frequency. To identify such genes, we focused on those with a reduced number of SNVs 495 

during GBH treatment compared to controls. We identified genes with fewer SNVs regardless of 496 

their frequency. For this analysis, we only included genes with at least 3x coverage in every pond 497 

and excluded genes with a coverage greater than 3 times the MAG coverage as this could be from 498 

read donating from other species which share the same gene (67). We calculated the SNVs density 499 

(per Mbp) for each gene and then calculated the difference in each pond-pond comparison. For 500 

each comparison, we selected the top 5% of genes which have a decrease in SNV density. From 501 
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this list we selected genes which have a SNV density decrease in each GBH-control comparison 502 

(which we term a parallel SNV density decrease). We removed genes that were in the top 5% of 503 

any GBH-GBH or control-control comparison since these should not be relevant to GBH 504 

adaptation. 505 

As a complement to this analysis, we used an existing method which identifies genes with 506 

differential SNV counts between treatments (44). This method assumes a Poisson distribution of 507 

mutations among genes (44). Briefly, for each MAG, we compared the total number of SNVs in a 508 

gene in one pond to the number of SNVs in that gene in another pond. For each pair of ponds, we 509 

identified genes with a significant SNV number difference between ponds. Next, we determined 510 

which genes had a significant decrease in SNV number in GBH ponds compared to controls in 511 

every GBH-control comparison (which we term a parallel SNV number decrease). 512 

Gene copy number variation 513 

For each gene, we estimated the number of gene copies to identify gene copy number differences 514 

between treatments. Gene copy number was calculated as the gene’s depth of coverage divided by 515 

the average MAG depth of coverage. Genes with a copy number greater than 3 (likely enriched in 516 

mismapped reads) in any pond were excluded from the analysis. For each remaining gene we 517 

compared the average copy number in control ponds to the average copy number in GBH ponds. 518 

We considered genes with a copy number difference of at least 0.5 between control and GBH 519 

ponds to be notable. We further removed genes if there was any overlap in copy number between 520 

any control and GBH pond (e.g. if GBH copy number average is lower than the control average, 521 

all GBH ponds had to have a copy number lower than all control ponds). 522 

COG function enrichment analysis 523 

We performed a gene set enrichment analysis using the COG database (70) on the five sets of 524 

genes identified as potential targets of selection: (1) SNV frequency changes, (2) parallel SNV 525 

density decreases, (3) parallel SNV number decreases, (4) gene copy number increases, and (5) 526 

gene copy number decreases. Genes in each MAG were annotated with COG IDs using eggNOG 527 

mapper v2.1.12 (63, 64) and COG categories from the 2020 database update (71). We used R 528 

version 4.3.3 (69) to perform a Fisher’s exact test with each gene list to determine if any COG 529 

category was significantly enriched for potential targets of selection compared to a background set 530 
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of all genes from the 11 MAGs. A false discovery rate (FDR) correction was applied to account 531 

for multiple comparisons. In addition to the overall enrichment test, we performed separate tests 532 

for inferred GBH-sensitive and resistant MAGs. 533 

Data Availability 534 

Metagenomic sequences from each sample are available on NCBI under BioProject 535 

PRJNA1161687. 536 

Code Availability 537 

Scripts for all analyses are available at https://github.com/emderrick/LEAP_sweeps. 538 
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