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Abstract

The selection coefficient, s, quantifies the strength of selection acting on a genetic vari-

ant. Despite this parameter’s central importance to population genetic models, until

recently we have known relatively little about the value of s in natural populations.

With the development of molecular genetic techniques in the late 20th century and the

sequencing technologies that followed, biologists are now able to identify genetic vari-

ants and directly relate them to organismal fitness. We reviewed the literature for pub-

lished estimates of natural selection acting at the genetic level and found over 3000

estimates of selection coefficients from 79 studies. Selection coefficients were roughly

exponentially distributed, suggesting that the impact of selection at the genetic level is

generally weak but can occasionally be quite strong. We used both nonparametric

statistics and formal random-effects meta-analysis to determine how selection varies

across biological and methodological categories. Selection was stronger when mea-

sured over shorter timescales, with the mean magnitude of s greatest for studies that

measured selection within a single generation. Our analyses found conflicting trends

when considering how selection varies with the genetic scale (e.g., SNPs or haplo-

types) at which it is measured, suggesting a need for further research. Besides these

quantitative conclusions, we highlight key issues in the calculation, interpretation, and

reporting of selection coefficients and provide recommendations for future research.
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Introduction

Since the publication of Lande and Arnold’s landmark

methods for calculating selection on quantitative pheno-

typic traits (Lande & Arnold 1983), the study of selec-

tion in natural populations has exploded. Hundreds of

studies have generated thousands of estimates of selec-

tion on phenotypic traits, and the last 15 years have

seen a number of influential reviews and meta-analyses

of this data on phenotypic selection. These studies have

improved our understanding of the strength and form

of phenotypic selection in natural populations (Hoek-

stra et al. 2001; Kingsolver et al. 2001; Hereford et al.

2004), demonstrated its role in creating phenotypic

diversity (Rieseberg et al. 2002), and shown how selec-

tion varies through time and space (Siepielski et al.

2009; Kingsolver & Diamond 2011; Siepielski et al. 2011;

Morrissey & Hadfield 2012; Siepielski et al. 2013).

Of course, biologists have long recognized that natu-

ral selection must be transmitted to the genetic level for

adaptive evolutionary change to occur. Population

genetic models explicitly account for natural selection’s

role in changing allele frequencies with the parameter s,

the selection coefficient (Hartl & Clark 2007). Although

s can have slightly different meanings in different mod-

els (Box 1), it generally describes the relative fitness

advantage or disadvantage of an allele at a genetic

locus. The genetic selection coefficient is thus similar to

phenotypic selection gradients and differentials and

quantifies the magnitude of natural selection acting on

genetic variants. Compared to measures of phenotypic
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selection, however, we know relatively little about the

values of s in natural populations of organisms. The

questions that have been considered in reviews of phe-

notypic selection remain unanswered at the genetic

level: How strong is selection at the genetic level? Is

selection most often directional, overdominant, or fre-

quency dependent? What is the distribution of selection

coefficients in natural populations, and does that

distribution change according to the temporal or genetic

scale at which selection is measured? These are impor-

tant questions in evolutionary biology, but it is only

recently that biologists have had sufficient genetic data

to address them empirically.

Theoretical models have examined these issues, but

their results are difficult to apply to natural populations

for a variety of reasons. The first difficulty is the

Box 1. The meaning(s) of s

The selection coefficient, s, can have slightly different meanings in different evolutionary models. In most models

s represents the difference in mean relative fitness between a reference genotype and another genotype. By defini-

tion, the reference genotype has a relative fitness of one. The choice of reference genotype, however, leads to subtle

differences in the properties of s. First, consider directional selection at a locus with two alleles, A and a, with allele

A having higher fitness. Researchers studying mutation have tended to focus on selection against new, deleterious

alleles. The homozygote of the most-fit allele is used as the reference genotype, such that s = 1 – waa and waa = 1-s.

In this case, s quantifies the strength of selection against the deleterious allele and has a range from 0 to 1. Studies

of adaptation, however, typically focus on selection in favour of beneficial alleles and thus set the homozygote of

the less-fit allele as the reference: s = wAA - 1, or wAA = 1 + s. Here, s measures the strength of selection acting in

favour of the beneficial allele and has a range from 0 to infinity, as genotypes can have a >100% fitness advantage,

at least in theory. It should be noted that under this scenario sfor_AA is not equal in magnitude to sagainst_aa (see sup-

plementary methods). When the magnitude of s is small the difference between sfor_AA and sagainst_aa will be small,

but as the strength of selection increases the difference grows. When sagainst_aa equals 1 (a lethal allele), sfor_AA
equals infinity.

So far this model has ignored dominance, which has important implications for the calculation of s. In popula-

tion genetic models of directional selection, dominance is most often accounted for with the dominance coefficient,

h. In the single locus, two-allele model described above, the fitness of each genotype would be wAA = 1, wAa = 1 -

hs, waa = 1 - s. When h = 0, A is completely dominant and wAA = wAa. When h = 1, A is completely recessive and

waa = wAa. Although the definition of s remains the same, the calculated value of s could change significantly

depending on the assumed or known level of dominance and the method used to estimate selection. While meth-

ods that estimate s by directly measuring fitness differences between homozygotes are robust to changes in h,

methods that track changes in allele frequency or that measure fitness in heterozygotes are sensitive to assumptions

about dominance. The dominance coefficient was rarely empirically estimated in the studies included in our data-

base. Most studies assumed additive fitness effects (h = 0.5) or calculated multiple possible s values under differ-

ence assumptions of dominance.

In the case of over- or underdominance, slightly different genetic models are used. The heterozygote is defined

as the reference, and selection coefficients for or against each homozygote are calculated. Selection may be assumed

to be symmetric such that s for each homozygote is equal, but other models allow s to vary, and might use s1 and

s2 or s and t to denote the two selection coefficients.

In the simple, one-locus models described above, s quantifies the direct fitness effects of the genetic variant. In

real organisms, of course, allelic variants do not occur in isolation. Each generation, the fate of an allele is deter-

mined by both the direct effects of that locus on fitness and by the indirect effects of selection operating on other

sites that are in linkage disequilibrium (LD) with the focal locus (Smith & Haigh 1974; Charlesworth et al. 1993).

The situation is analogous to correlated selection on phenotypic traits (Lande & Arnold 1983). At the phenotypic

level, biologists can use multiple regression to distinguish between direct selection and total (direct and correlated)

selection on a specific phenotype (selection gradients and differentials, respectively; Lande & Arnold 1983; Brodie

et al. 1995). At the genetic level, isolating the direct effects of an individual locus on fitness is quite difficult (Barrett

& Hoekstra 2011). Accounting for the effects of linked sites requires either (i) sufficient recombination to break

apart associations with other alleles, (ii) complex, multigeneration crosses such as near-isogenic lines, (iii) replicate

populations subject to the same experimental treatment, (iv) sufficient sample sizes and genetic variation such that

selected alleles are present in multiple genetic backgrounds, or (v) transgenics. In most other cases, genetic selec-

tion coefficients should be interpreted as being analogous to phenotypic selection differentials, not gradients.
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conceptual division between theories of positive selec-

tion and theories of negative selection. The designation

of selection as positive or negative is determined by the

choice of the allele used as the reference for calculating

relative fitnesses and is thus somewhat arbitrary

(Box 1). Nevertheless, theoretical models often consider

only one mode of selection, and this difference in focus

can lead to different results. For example, theoretical

models of the fitness effects of new mutations find that

beneficial mutations fixed during adaptation are likely

exponentially distributed, while the distribution of dele-

terious mutations can be complex and multimodal (see

reviews by Orr 2005b; Eyre-Walker & Keightley 2007;

Rockman 2012). Although it is easy to delimit positive

and negative selection in theoretical models, drawing

this distinction is more difficult in natural systems,

where there is considerable debate about whether most

populations are at fitness optima (and thus likely to

experience mostly negative selection) or maladapted

(and thus allowing an opportunity for positive selec-

tion). Reciprocal transplant experiments find frequent

but not ubiquitous local adaptation (reviewed in

Kawecki & Ebert 2004; Leimu & Fischer 2008; Hereford

2009) and published estimates of phenotypic selection

indicate that mean trait values for the majority of traits

are within two standard deviations of the fitness opti-

mum (Estes & Arnold 2007). Whether these patterns

indicate widespread adaptation or maladaptation is

open to interpretation, so it is difficult to know a priori

which set of theory to apply (Hendry & Gonzalez 2008).

Second, within the broad fields of positive and negative

selection, theoretical predictions vary greatly based on

the assumptions and parameters of specific models. Con-

sider, for example, theories of adaptation that predict the

distribution of fitness factors fixed during an adaptive

bout (Orr 2005a,b). Models that assume a stationary fit-

ness optimum (e.g., Orr 1998, 2003; Kryazhimskiy et al.

2009) predict a different distribution of selection coeffi-

cients than models with a moving optimum (e.g., Collins

et al. 2007; Kopp & Hermisson 2007, 2009a,b). Other fac-

tors that can influence this distribution include correla-

tions between traits (Martin & Lenormand 2006),

migration between populations (Yeaman & Whitlock

2011), the use of novel versus standing genetic variation

(Hermisson & Pennings 2005; Barrett & Schluter 2008),

the distance to the fitness optimum (Barrett et al. 2006;

Seetharaman & Jain 2013), and the number of fitness

optima (Martin & Lenormand 2015). Once again, apply-

ing this theory requires knowledge of parameters (e.g.,

amount of migration between locally adapted popula-

tions, current level of (mal)adaptation in the population,

movement of fitness optima) that can be difficult to esti-

mate for natural populations. Finally, theoretical models

usually examine selection at a scale that can be difficult

for empiricists to access in natural populations. Most of

the models mentioned above consider the fitness effects

of single point mutations. Often, biologists must measure

selection on different alleles of a gene or QTL; selection

acting on these larger genomic intervals might have dif-

ferent properties from selection on SNPs.

In summary, this array of theory is informative but

difficult to apply. Until recently, obtaining the data nec-

essary to address these questions empirically was chal-

lenging. Although population geneticists have inferred

selection at the genetic level by observing changes in

Mendelian phenotypes for many years (Appendix S2),

direct estimation of selection on genetic variation was

only made possible by the revolution in molecular

genetic techniques that occurred in the 1970s and 1980s.

These methods, and the next-generation sequencing

technologies that followed, have allowed researchers to

detect natural selection at the genetic level using a vari-

ety of methods. We briefly discuss these methods

below; see Linnen & Hoekstra (2009) and Hohenlohe

et al. (2010) for more thorough reviews.

Many observational approaches to quantifying selec-

tion rely on measuring changes in allele frequency, which

can be detected directly with molecular genetic tech-

niques. Allele frequency changes can occur over time

(e.g., an increase in frequency over multiple generations,

Nsanzabana et al. 2010), across an environmental gradient

(e.g., a decrease in frequency across a gradient of insecti-

cide application, Lenormand et al. 1999), or between

contrasting environments (e.g., frequency differences

between two locally adapted populations, Hoekstra et al.

2004). Another important observational approach is the

detection of selection from features of DNA sequence

variation. These features can include (but are not limited

to) haplotype structure (e.g., Quesada et al. 2003), patterns

of linkage disequilibrium (LD) around a selected locus

(e.g., Ohashi et al. 2011), and reduction in variation

around a selected locus (e.g., Orengo & Aguade 2007).

The limitation of these approaches is that they alone can-

not explicitly determine the process that led to the

observed patterns of allele frequency or nucleotide varia-

tion (Barrett & Hoekstra 2011). Thus, observational

approaches often use population genetic modelling, simu-

lations, and statistical analysis to rule out the possibility

that only genetic drift or other neutral forces (e.g., demo-

graphic changes) could have produced the observed pat-

tern (Excoffier et al. 2009; Li et al. 2012; Vitti et al. 2013).

Nevertheless, all estimates of selection likely contain some

imprecision due to drift. This problem of determining

causality can sometimes be mitigated with experimental

approaches. By tracking changes in allele frequency dur-

ing experimentally controlled selection in the field,

researchers can accurately measure selection and identify

the agent imposing it (Linnen &Hoekstra 2009).
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Over the past few decades, biologists have made use

of all of these techniques, and others (e.g., Robinson

et al. 2012), to quantify selection acting at the genetic

level in natural populations. In this study, we gathered

those estimates of selection to address a number of key

questions. Given the difficulty of applying population

genetic theory to predict the distribution of selection

coefficients, we first plotted this distribution to see how

it differs between biological and methodological cate-

gories. Next, we used nonparametric statistics and gen-

eralized linear mixed models to quantify how the

magnitude of selection varies across temporal and

genetic scales. Meta-analyses of phenotypic selection

and evolutionary rates indicate that strong phenotypic

selection is rarely maintained for long and that long-

term estimates of selection or rates of evolutionary

change tend to be weaker than short-term estimates

(Gingerich 1983; Hoekstra et al. 2001; Kinnison & Hen-

dry 2001; Siepielski et al. 2009). We predicted that this

inverse relationship between strength of selection and

temporal scale would be true of selection at the genetic

level as well. We hypothesized that selection would

also vary based on the genetic unit at which it was

measured. Specifically, we assumed that strength of

selection on a locus would be proportional to the

amount of phenotypic variance that the genetic unit can

explain. We reasoned that, with some exceptions, larger

genetic units (e.g., allelic variants of a gene or QTL)

would tend to have larger phenotypic effects than

SNPs. Thus, we predicted that the strength of selection

would increase with genetic scale. Finally, we highlight

a number of important issues regarding the calculation

and interpretation of selection coefficients and make

recommendations for further research that will improve

our understanding of this important evolutionary

parameter.

Materials and methods

Literature search

To assemble our database, we searched for journal arti-

cles reporting selection coefficients in a number of ways.

First, we searched the Web of Science database system

using three different search terms: ‘selection coefficient*’,
‘genotyp* selection’ and ‘adapt* gene’. We excluded

books and search results from scientific fields outside of

ecology and evolution (see supplementary methods). Sec-

ond, we searched the preliminary literature database of

Siepielski et al. 2013, a meta-analysis of spatial variation

in phenotypic selection, for journal articles that were

excluded from their analysis for studying genotypes

instead of phenotypes. Third, we searched the weekly

tables of contents from a number of journals that focus

on evolutionary biology and genetics (see supplementary

methods). Finally, while determining which studies met

our inclusion criteria, we noted references to papers that

might have reported selection coefficients and added

those to our database. In total, we examined approxi-

mately 2200 papers for estimates of natural selection at

the genetic level.

Inclusion criteria

To be included in our quantitative analysis, studies

needed to satisfy three criteria. First, the study had to

report a selection coefficient on a genetic unit (s). Esti-

mates of s that were equal to zero were not included, as

they did not detect selection acting on a locus (see sup-

plementary analysis). Selection coefficients can have dif-

ferent meanings under different population genetic

models, but in most cases they quantify the difference in

mean relative fitness between the most- and least-fit

homozygotes (Box 1). We excluded a small number of

studies that reported selection coefficients that did not

follow this model and thus had different properties

from the rest of the calculated estimates. We also anal-

ysed directional selection separately from over- and

underdominance. Selection coefficients scaled by effec-

tive population size (e.g., c or d) were excluded, as were

estimates of s that reported a range of possible values

without specifying a median or point estimate. A num-

ber of studies reported relative fitnesses for genotypes

without explicitly calculating a selection coefficient. In

those cases we used the relative fitnesses to calculate

selection against the less-fit homozygote (s = 1-waa).

Second, selection coefficients needed to be calculated

for a specific genetic unit. For our analysis, we catego-

rized these units as either ‘SNP’, which includes point

mutations and single nucleotide polymorphisms, or

‘haplotype’, which includes all larger genetic units (e.g.,

insertions or deletions of more than one base pair, alle-

lic variants of genes, allozymes, microsatellite loci, and

quantitative trait loci). A number of studies used DNA

sequence data to estimate the distribution of selection

coefficients or average strength of selection acting on a

set of genetic loci or type of mutation but did not calcu-

late locus-specific selection coefficients. For example,

Turchin et al. (2012) estimated the average strength of

selection on ~1400 individual SNPs associated with

increased height in Europeans, but did not report esti-

mates of s for each SNP. These average selection coeffi-

cients were excluded from our analysis.

Finally, studies needed to measure selection operating

in natural populations. Thus, we excluded measures of

selection in laboratory populations or in domesticated

plants and animals. Estimates of selection in humans

were included, as were estimates of selection from
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experimentally manipulated natural populations or

organisms introduced into suitable habitat.

For each study that satisfied these criteria, we

recorded the absolute value of s, whether selection was

positive or negative, any measures of error, the statisti-

cal significance of the coefficient, the number of genera-

tions over which selection was measured, the genetic

unit at which selection was measured, the method used

to calculate the selection coefficient, whether the esti-

mate of selection came from observation or a manipula-

tive experiment, and other information (Table S2,

Supporting information). We modified this raw database

in three ways to prepare it for quantitative analysis.

First, to avoid pseudoreplication, we removed estimates

of selection that were calculated from the same data as

other selection coefficients. In most cases this occurred

when one study reported alternative estimates of selec-

tion for the same genetic unit under different evolution-

ary parameters (e.g., generation times or degrees of

dominance). When the authors deemed one set of

parameters most biologically plausible, we included the

selection coefficient from that model. Otherwise, we

flipped a coin to randomly select one selection coeffi-

cient to include. Some studies calculated selection coeffi-

cients from data previously reported in other studies. If

the original study also reported selection coefficients, we

included whichever study reported more selection coef-

ficients. If the studies reported equal numbers of selec-

tion coefficients, we included the original study.

Second, some studies reported selection coefficients

from the same data at different temporal scales or for dif-

ferent fitness components. In such cases, we included the

selection estimates from the shorter timescales or more

subdivided fitness components in our analysis, as includ-

ing only the overall component might obscure relevant

selection and result in pseudoreplication. For example,

B�er�enos and colleagues calculated selection coefficients

based on selection for survival, reproductive success, and

overall lifetime fitness (B�er�enos et al. 2015). We included

the measures of selection on survival and reproductive

success, but did not include the lifetime fitness selection

coefficients in our quantitative analysis.

Finally, we standardized all estimates of selection as

the magnitude of selection against the disfavoured

allele. Because positive selection for beneficial alleles

and negative selection against deleterious alleles are cal-

culated under slightly different models, they are not

directly comparable (see Box 1). Fortunately, a given

estimate of positive selection on an allele can be easily

converted into the estimate of negative selection against

the corresponding disfavoured allele, assuming a dial-

lelic system. Hereafter, references to the distribution of

selection coefficients or the mean magnitude of selection

coefficients refer to these converted estimates.

Quantitative analysis

Selection on phenotypes can be measured using stan-

dardized, regression-based methods that allow straight-

forward comparison in a meta-analysis (Kingsolver

et al. 2012; Morrissey & Hadfield 2012; Siepielski et al.

2013). Selection at the genetic level, on the other hand,

can be measured with many different methods, and this

diversity complicates formal meta-analysis. We there-

fore analysed the database using a variety of statistical

techniques. All analysis was performed in R version

3.0.1 (R Core Team 2015).

First, we followed the example of early syntheses of phe-

notypic selection coefficients by plotting the distribution of

selection coefficients, observing how this distribution dif-

fers between biological and methodological categories,

and using nonparametric statistics to evaluate differences

in the mean magnitude of selection between categories

(Endler 1986; Kingsolver et al. 2001). Because two studies

accounted for over 90% of selection estimates (see results),

we performed all nonparametric analysis on both the full

dataset and the subset of estimates excluding these two

studies, hereafter referred to as the reduced dataset.

Some studies reported multiple selection coefficients,

and failing to correct for autocorrelation within studies

could influence our conclusions (Gurevitch & Hedges

1999). To account for this, we implemented generalized

linear mixed models (GLMMs) in a Bayesian framework

using the R package MCMCglmm (Hadfield 2010). We

included study as a random factor and used the exponen-

tial distribution to model our response variable, the selec-

tion coefficient. For the fixed effects, we specified

independent normal distributions with mean = 0 and

large variance (109). For the random effects, we used

parameter expansion, which results in scaled F priors, to

improve convergence. We used flat inverse-Wishart pri-

ors for the residual variance (a full specification of the

models and priors, including the function calls in

MCMCglmm, can be found in the supplementary meth-

ods). We first modelled the distribution of selection coeffi-

cients without any predictor variables to see how

accounting for autocorrelation within studies influenced

our results. We then ran separate models specifying the

direction of selection, type of study, time period of selec-

tion and genetic unit as explanatory variables to under-

stand whether the strength of selection differed between

these categories.

Measurement error can have a significant effect on

the conclusions drawn from meta-analyses of selection

(Morrissey & Hadfield 2012). Unfortunately, relatively

few studies reported measures of error around their

estimates of selection, and those that did often used dif-

ferent methods to calculate error bounds. For this rea-

son, we were unable to account for measurement error
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in our analysis of all reported selection coefficients. To

gain some understanding of how measurement error

might influence our results, we performed three

GLMMs on the subset of our data for which standard

errors were reported or could be calculated and com-

pared their estimates of the mean selection coefficient.

We used the same normal priors for the fixed effects,

but did not use parameter expansion and instead used

flat inverse-Wishart priors for both the random effects

and residual variance. The first model included study

as a random factor, the second incorporated measure-

ment error and the third incorporated both terms.

Results

Database results

Of the more than 2200 studies we examined, only 79

(~3.5%) met all the inclusion criteria. After accounting for

pseudoreplication and multiple temporal scales within a

study, the database contained 3416 directional selection

coefficients and 70 instances of heterozygote advantage.

Most of the directional selection coefficients came from

two studies. Anderson et al. 2014 reported 2793 estimates

of selection, and Gompert et al. 2014 contained 300 selec-

tion coefficients (see Box 2). All of the methodological

and biological categories were well represented (see

Table 1). Of the 79 studies, 15 reported selection coeffi-

cients for overdominant selection (see Box 3).

Distributions and nonparametric analysis

Overall, directional selection coefficients were roughly

exponentially distributed (coefficient of variation = 1.05,

CV = 1 for exponential distributions). Estimates of the

strength of selection ranged from extremely weak

(s = 9.9 9 10�5) to extremely strong (maximum s = 1 for

two lethal mutations, otherwise maximum s = 0.891)

(Fig. 1a). The mean selection coefficient of the full dataset

was 0.135 (95% CI: 0.131–0.140, determined by 10 000

bootstrap replicates), while the mean of the reduced

dataset was significantly smaller at 0.093 (95% CI: 0.078–
0.110; Wilcoxon rank sum test, W = 697656, P = 3.45 9

10�15). The distribution of the reduced dataset was also

roughly exponential (Fig. 1b, dark gray bars).

In the full dataset, there was a significant difference

in mean strength of selection across categories of statis-

tical significance (Kruskal–Wallis rank sum test,

v2 = 325, d.f. = 2, P = 2.2 9 10�16), with significant esti-

mates of selection being much greater than estimates

that were not significant or of unknown significance

(Figs 2a and 3a, Table 2). In the reduced dataset, there

was no difference among statistical categories (Kruskal–
Wallis rank sum test, v2 = 1.79, d.f. = 2, P = 0.4; Fig. 3a,

Table 2). Estimates of negative selection had larger

mean selection coefficients than estimates of positive

selection in both the full and reduced datasets (Fig. 3b,

Table 2). The mean strength of selection was greater for

manipulative experiments than for observational esti-

mates in both the full and reduced datasets (Table 2).

The distribution of selection coefficients varied based

on the time period over which selection was measured

(Figs 2b and 3c, Table 2). When studies did not report

the number of generations over which selection was

measured, we searched the literature for estimates of

generation time for the studied organism and used

these to coarsely estimate the number of generations

over which selection was measured. We grouped esti-

mates of selection into four categories: selection within

a generation, short-term selection operating over <200
generations, long-term selection operating over 200 or

more generations, and estimates for which the time per-

iod was unclear or unspecified. The mean magnitude of

s was significantly different across categories (full data-

set: Kruskal–Wallis rank sum test: v2 = 122, d.f. = 3,

P = 2.2 9 10�16; reduced dataset: Kruskal–Wallis rank

Table 1 Summary of database and directional selection coefficients. Numbers in parenthesis indicate the number of selection

coefficients in the reduced dataset

Full dataset Directional selection

Studies 79 Taxon Type Unit of

Selection

Time Period Statistical

significance

Taxa 30 Vertebrates 202 SNP 2160 (131) Within generation 3131 (38) Significant 398 (106)

Total # s 3556 Invertebrates 350 (50) Haplotype 1256 (192) Short term 125 Not significant 2822 (21)

Positive 1596 (224) Plants 2844 (51) Long term 141 Not reported 196

Negative 1820 (99) Microbes 20 Unspecified 19

Overdominant 140*

*Estimates of overdominant selection report two selection coefficients per locus, one for the selective advantage over each of the two

homozygotes.
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Box 2. Field Studies of Selection: Anderson et al. 2014 and Gompert et al. 2014

Two studies reported a large portion of the selection coefficients in our database. Both studies tracked changes in

allele frequency on hundreds to thousands of loci in large-scale field experiments, and there was no a priori under-

standing of whether these markers would influence fitness. This is in contrast to many of the other papers in our

database, and in principle, such field studies could give a more unbiased view into how selection operates across

the genome. However, details of the experimental design and analytical procedures for these studies can also influ-

ence the selection coefficients they report, so it is useful to discuss each paper in more detail.

Anderson et al. 2014

Anderson and colleagues used multiyear field transplants to study local adaptation and fitness trade-offs in

Boechera stricta, a perennial mustard native to the Rocky Mountains. Anderson et al. crossed plants from two

potentially locally adapted populations in Colorado and Montana to create 172 F6 recombinant inbred lines

(RILs), and genotyped each RIL at 62 microsatellite loci and 102 SNPs. They planted two cohorts containing

replicates of each RIL and parental line into two common gardens near the source populations, and tracked each

cohort for multiple years, measuring survival, flowering success, and fecundity for each individual. From this

individual-level data on fitness components, they calculated relative fitnesses for the different genotypes at each

locus and used permutation to estimate selection coefficients and significance thresholds for each genotyped

locus (Anderson et al. 2013, 2014). This permutation procedure does not calculate error bounds, so the precision

of each estimate is unknown. They calculated s at both experimental sites for multiple within-generation episodes

of selection and multiyear selection coefficients based on lifetime flowering probability and fruit production. For

our quantitative analysis, we included all within-generation estimates of selection, but not the lifetime selection

coefficients (see main text). We also used the more conservative genomewide threshold when classifying esti-

mates of s as significant or insignificant. Thus, most estimates of s were insignificant, and this might tend to

increase the mean of the significant category. However, Anderson et al. calculated and reported a selection coeffi-

cient for every genetic marker at every instance of selection, regardless of strength or significance. There is there-

fore no within-study publication bias, and Anderson et al. present an objective report of the impact of selection

in their experiments. Their study is also unusual in that it calculates selection coefficients for each locus in two

locations across multiple time periods, providing some insight into how selection at the genetic level can vary

through space and time.

Gompert et al. 2014

Gompert and colleagues studied two ecotypes of Timema cristinae stick insects that are differentially adapted

to live on the host plants Adenostoma fasciculatum and Ceanothus spinosus. Visual predation by birds drives phe-

notypic divergence in T. cristinae: insects with a white dorsal stripe are cryptic on Adenostoma and conspicuous

on Ceanothus, while the opposite is true of unstriped morphs (Sandoval 1994; Nosil 2004; Nosil & Crespi 2006).

Gompert et al. collected 500 total T. cristinae from a mostly Adenostoma-adapted population that receives some

gene flow from other populations with different host plants (Nosil et al. 2012). They cut off a portion of leg

from each individual for tissue sampling and transplanted groups of insects onto individual Adenostoma and

Ceanothus plants in experimental blocks at a nearby site. After 8 days they resampled the experimental plants

and recaptured 140 insects, from which they took a postselection tissue sample. Using a genotype-by-sequencing

approach, they determined the pre- and postselection allele frequencies of almost 200 000 SNPs. They developed

statistical models to identify loci that showed parallel changes in allele frequency across experimental blocks

that were unlikely to occur due to drift alone and then used MCMC to calculate the mean selection coefficient

and 95% credible intervals for these loci. Thus, for quantifying selection, Gompert et al. take a different

approach from Anderson et al. Although they have the data, in principle, to calculate selection coefficients for

all loci, they calculate selection coefficients only for loci that demonstrated large, parallel allele frequency

changes across experimental blocks. Weak selection is unlikely to drive such changes, and the Gompert et al.

method is thus biased against the quantification of weak selection. Indeed, the distribution of selection coeffi-

cients reported in Gompert et al. is quite different from the distribution of both Anderson et al. 2014 and all

other estimates of s (Fig. 1b).
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sum test: v2 = 48, d.f. = 3, P = 2.1 9 10�10; Fig. 3b). In

both datasets, the mean strength of selection decreased

as the timescale over which selection was measured

increased. The distribution of selection coefficients

also varied with the genetic scale at which selection

was measured (Figs 2c and 3d). In the full dataset, the

mean strength of selection was greater for SNPs than

for haplotypes, although this difference was marginally

nonsignificant. In the reduced dataset, however,

selection was significantly stronger on haplotypes

(Table 2).

GLMM results

The results of our GLMMs were qualitatively similar

to the results obtained using nonparametric statistics.

First, we modelled the mean selection coefficient of the

full dataset while accounting for autocorrelation within

Box 3. Heterozygote Advantage

Overdominant selection was rarely detected, with only 140 estimates of s from 15 studies (70 instances of

heterozygote advantage, two selection coefficients per instance). With so few estimates, it is difficult to draw firm

conclusions about the strength of overdominant selection, especially because most estimates were insignificant or

did not report statistical significance (Fig. B3). Overall, selection ranged from very weak (s = 0.0003) to very strong

(s = 1 for homozygote lethal alleles). The distribution of overdominant selection coefficients was significantly differ-

ent from that of directional selection coefficients (Kolmogorov–Smirnov test, D = 0.34, P = 1.14 9 10�14) and was

more uniformly distributed, although weak estimates of selection were still most common. Multiple studies

reported selection coefficients for HLA loci in humans or MHC loci in other vertebrates. These immune system

genes are classic examples of heterozygote advantage (Hedrick 2012). Heterozygote advantage was also detected at

a number of allozyme loci in various species of plants, although determining phenotypic effects and agents of

selection on these loci is more difficult. The prevalence of heterozygote advantage and its importance for the main-

tenance of genetic variation has long been a topic of debate (Lewontin & Hubby 1966; Garrigan & Hedrick 2003;

Mitchell-Olds et al. 2007; Hedrick 2012; Fijarczyk & Babik 2015). There are few cases in which heterozygote advan-

tage has been suggested in natural populations (Hedrick 2012), and, as we find in this study, even fewer cases in

which selection has been quantified. This may be due to the inherent difficulties in detecting heterozygote advan-

tage (Garrigan & Hedrick 2003). For example, genome scans can be used to detect a signature of balancing selec-

tion in nucleotide polymorphism data, which may be indicative of heterozygote advantage. However, other

processes can also lead to a signature of balancing selection, including spatial or temporal variation in selection

and frequency-dependent selection (Fijarczyk & Babik 2015). Distinguishing between these possibilities is often not

possible using DNA sequence data alone (Hedrick 2012). Alternatively, heterozygote advantage may be rarely

detected because it is, in fact, rare. Resolving the debate over whether heterozygote advantage is truly rare or sim-

ply difficult to detect is beyond the scope of our study.

Fig. B3 The distribution of overdominant selection coefficients. (a) The distribution of all overdominant selection coefficients. (b)

The distribution of overdominant selection coefficients across different categories of statistical significance.
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studies by including study as a random factor. This

GLMM estimated a mean overall selection coefficient

of 0.095 (posterior mode, 95% HPD interval: 0.066–
0.124). These confidence intervals do not overlap with

those of the uncorrected mean selection coefficient of

the full dataset (0.135, 95% CI: 0.131–0.140). However,

the GLMM estimate is very similar to the mean of the

reduced dataset (0.093, 95% CI: 0.078–0.110), albeit

with less precision. The GLMMs that incorporated pre-

dictor variables found results similar to the nonpara-

metric analyses, but with weaker estimates of the

strength of selection and wider confidence intervals,

such that differences between categories were not

always statistically significant (see Table 3 for posterior

modes and 95% HPD interval estimates for all mod-

els). Negative selection was slightly stronger but not

significantly different from positive selection. Selection

estimates from experimental studies were nearly equal

to estimates from observational studies, in contrast to

the nonparametric results. Selection over long time-

scales was significantly weaker than both selection

over short timescales and selection within a genera-

tion. The GLMM that included genetic scale as a pre-

dictor estimated that selection was stronger on

haplotypes than on SNPs, although this difference was

not significant.

The GLMMs we performed to evaluate the effects of

measurement error indicated that autocorrelation had a

much greater effect on our dataset than imprecise esti-

mation of selection coefficients (Fig. 4, Table 3). Com-

pared to the uncorrected mean s estimated by

bootstrapping, the GLMMs that incorporated measure-

ment error had smaller estimates of mean s and wider

confidence intervals, as might be expected. However,

incorporating measurement error had much less effect

than accounting for autocorrelation within a study,

which greatly reduced the estimate of mean s. This

analysis could only be performed on the approximately

10% of estimates for which we could calculate standard

errors, so generalizing these results to the full dataset

requires caution. However, these models indicate that

the results of the GLMM on the full dataset, which

accounts for autocorrelation, are probably robust to

measurement error.

Discussion

In this study, we report the results of the first meta-ana-

lysis of published estimates of selection coefficients in

natural populations. Our search through the literature

has uncovered a dynamic and growing field, with

researchers using a wide variety of methodological and

analytical techniques to understand how genetic varia-

tion influences fitness across a diverse set of taxa.

Together, these estimates allow us to take the first steps

towards answering fundamental questions about how
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Fig. 1 The distribution of directional selection coefficients, s. (a) The distribution of directional selection coefficients included in the

quantitative analysis. All selection coefficients are represented as selection against the less-fit allele. (b) Directional selection coefficients,

coloured by the study in which they were reported. Anderson et al. 2014; in light blue, reported 2793 selection coefficients. Gompert

et al. 2014, in orange, contained 300 selection coefficients. All other studies, in dark gray, contained 323 estimates of selection.
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natural selection operates at the genetic level. The vast

majority of selection coefficients reported were for direc-

tional selection, with heterozygote advantage rarely

detected (Box 3). We found that directional selection

coefficients were roughly exponentially distributed, a

pattern similar to estimates of selection on phenotypes.

Although most estimates of s were small, some studies

detected very strong selection (s > 0.5), especially on

short timescales. Selection varied as predicted with tem-

poral scale, as selection measured over long time peri-

ods was significantly weaker than selection measured

over shorter periods. Selection also varied with the size

of the genetic unit at which it was measured, although

our different analyses found conflicting trends.

Before discussing these conclusions in more detail, it

is important to note some limitations of this dataset. As

with most meta-analyses, our study likely contains

some biases, a number of which could tend to inflate

estimates of selection. First, researchers may have cho-

sen to study genetic loci that have an a priori expecta-

tion of being under strong selection (‘research bias’,

Gurevitch & Hedges 1999). For example, a number of

candidate gene studies examined insecticide resistance

alleles (e.g., Lenormand et al. 1998) or drug resistance

alleles (e.g., Roper et al. 2003), which are expected to be

under strong selection. Even studies that started with-

out a priori candidates and took a genomewide

approach to detecting selection (e.g., Anderson et al.

2014; Gompert et al. 2014) studied populations that

could be expected to be under strong selection for local

adaptation. Similarly, there may be publication bias

against reporting insignificant or weak estimates of
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Fig. 2 The distribution of directional selection coefficients in the full dataset for different biological and methodological categories.

Coefficients were categorized by (a) statistical significance, (b) time period over which selection was measured and (c) genetic scale at

which selection was measured. The vertical line in each histogram marks the uncorrected mean of selection coefficients in that category.
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selection (the well-known ‘file drawer problem’, Rosen-

thal 1979). In our dataset there appears to be some bias

against weak estimates of selection (see supplementary

analysis and Figs S2–S5, Supporting information), but

there was clearly bias against statistically insignificant

estimates. Nearly all insignificant estimates of selection
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Fig. 3 Summary of mean selection coefficients across different biological and methodological categories. Diamonds and error bars

represent the mean and 95% confidence intervals based on 10 000 bootstrap replicates. Unfilled diamonds represent the reduced

dataset and filled diamonds represent the full dataset. Selection coefficients were categorized by (a) statistical significance, (b) form

of selection, (c) timescale and (d) genetic scale. N.B. that estimates of selection for beneficial alleles were converted into selection

against the less favoured allele. The means and confidence intervals presented here are from those standardized estimates.
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came from the Anderson et al. 2014 and Gompert et al.

2014 studies. In the reduced dataset, there were only 21

insignificant selection coefficients, compared to 106 sig-

nificant estimates and 196 with unreported statistical

significance. Insignificant selection was thus rarely

reported outside of the context of genomewide studies

of selection, in which many insignificant estimates are

expected. Perhaps this is not surprising, given the pre-

eminence of neutral theory and the desire to avoid

adaptationism (Gould & Lewontin 1979; Nielsen 2009;

Barrett & Hoekstra 2011). However, we agree with

other authors who have urged researchers to think of

selection coefficients as continuous variables and not to

overemphasize categorical distinctions between ‘signifi-

cant’ and ‘insignificant’ selection coefficients (Gompert

2016). Failing to report selection coefficients because

they are insignificant puts too much emphasis on P-

values, too little on effect sizes and confidence intervals,

and leads to publication bias (Halsey et al. 2015).

Finally, the full database of selection coefficients is

largely made up of estimates from two studies that

combined large-scale field experiments with genome-

wide sampling to generate hundreds of estimates of

selection (Anderson et al. 2014; Gompert et al. 2014; see

Box 2). Experimental evolution studies have important

advantages over other methods of detecting selection,

as researchers can track evolution in real time and con-

trol or mitigate some of the demographic and ecological

factors that complicate the detection and quantification

of selection. However, these methods also have limita-

tions, especially for detecting weak selection (see

Box 2). While more studies of this type will surely

follow, for now they complicate the analysis of this

dataset. We have sought to account for this with a vari-

ety of statistical techniques, but the accumulation of

more estimates of selection at the genetic level will

ensure that future meta-analyses of natural selection at

the genetic level are not unduly influenced by a few

studies. Despite these limitations, this dataset is our

best source of information for both preliminary conclu-

sions about selection at the genetic level and for inform-

ing future research.

Table 2 Mean s and 95% confidence intervals (determined by 10

000 bootstrap replicates) of variousmethodological and biological

categories, for both the (A) full dataset and (B) reduced dataset.

(A) Full dataset

(B) Reduced

dataset

Mean 95% CI Mean 95% CI

Overall mean

selection

coefficient

0.135 0.131–0.140 0.093 0.078–0.110

Statistical significance

Significant 0.279 0.260–0.298 0.106 0.076–0.141
Not significant 0.118 0.114–0.123 0.074 0.031–0.129
Not reported 0.088 0.070–0.108 0.088 0.070–0.108
Form of selection

Positive selection 0.121 0.116–0.127 0.063 0.055–0.072
Negative selection 0.147 0.140–0.155 0.160 0.115–0.208
Type of study

Experimental 0.140 0.135–0.144 0.122 0.084–0.167
Observational 0.090 0.074–0.108 0.090 0.073–0.108
Time period

Within generation 0.141 0.136–0.146 0.232 0.141–0.333
Short term (<200 gens.) 0.114 0.094–0.137 0.114 0.094–0.137
Long term (≥200 gens.) 0.044 0.036–0.053 0.044 0.036–0.053
Not specified 0.040 0.024–0.062 0.040 0.024–0.062
Genetic unit

Haplotypes 0.128 0.120–0.135 0.121 0.097–0.147
SNPs 0.140 0.134–0.146 0.052 0.039–0.067

Table 3 Results of the generalized linear mixed models. Esti-

mates are the posterior mode and lower and upper bounds of

the 95% highest posterior density interval. (A) Results of

GLMMs performed on the full dataset. Bolded text shows the

form of the fixed effect model specification, and normal text

shows each fixed factor within that analysis. All models incor-

porated study ID as a random factor. (B) Results of GLMMs

performed on the subset of data for which standard errors

could be calculated. Bolded text shows the form of the fixed

effect model specification, and normal text lists the random

factors included in the three models: study ID, measurement

error or both.

Results of generalized

linear mixed models

Posterior

mode

95% HPD

interval

(A) Full dataset

Selection coefficient ~ 1 0.095 0.066–0.124
Selection coefficient ~ form of selection

Positive selection 0.086 0.065–0.117
Negative selection 0.096 0.074–0.133
Selection coefficient ~ type of study

Experimental 0.097 0.057–0.163
Observational 0.095 0.067–0.124
Selection coefficient ~ time period

Within generation 0.201 0.123–0.351
Short term (<200 gens.) 0.111 0.077–0.174
Long term (≥200 gens.) 0.036 0.023–0.065
Not specified 0.032 0.017–0.079
Selection coefficient ~ genetic unit

Haplotypes 0.093 0.067–0.124
SNPs 0.086 0.065–0.123
(B) subset with standard errors

Selection coefficient ~ 1

Study ID 0.141 0.055–0.231
Measurement error 0.186 0.174–0.202
Study ID + measurement error 0.113 0.050–0.217
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Quantitative results

Our analysis found a number of important quantitative

results. First, selection coefficients could be quite large.

The uncorrected mean and median of the full dataset

were 0.135 and 0.082, respectively, and there were 112

estimates of selection coefficients >0.5. Selection at the

genetic level is often assumed to be rather weak. For

example, some studies in this database that used simula-

tions to quantify selection considered coefficients only

within a narrow range (e.g., 0–0.1 in Ohashi et al. 2004; 0–
0.03 in Gerbault et al. 2009). While many published esti-

mates of selection coefficients are indeed small, our

results show that researchers cannot discount the possi-

bility of large selection coefficients for genetic variants,

especially over short timescales. Of course, whether a

given coefficient represents ‘significant’ or ‘strong’ selec-

tion is a matter of perspective. All alleles are affected by

genetic drift, and where to draw the line between ‘se-

lected’ and ‘neutral’ alleles is a matter of debate. Multiple

definitions have been proposed, and most rely on an

understanding of the effective population size (Ne), recog-

nizing that selection will be less efficient in smaller popu-

lations (Nei et al. 2010). When estimates of effective

population size are unavailable, as in most of the studies

in our database, Nei suggests a threshold of

approximately |s| = 0.001 for vertebrates (Nei 2005).

Under this relaxed definition of neutrality, nearly all

(3411 of 3416) of the selection coefficients in our database

are not neutral.

Second, the exponential distribution of s is very simi-

lar to the distribution of phenotypic selection coeffi-

cients reported in other studies (Hoekstra et al. 2001;

Kingsolver et al. 2001). This is not necessarily expected,

as genetic selection coefficients are fundamentally dif-

ferent from phenotypic selection differentials and gradi-

ents. While selection coefficients against a disfavoured

allele range from 0 to 1 (see Box 1), selection differen-

tials and gradients are calculated via linear regression

and their range is thus unrestricted in theory, although

in practice the absolute values of most estimates fall

between 0 and 1 (Kingsolver et al. 2001). There is no

clear theoretical expectation that both phenotypic and

genetic selection coefficients should be exponentially

distributed. Kingsolver et al. (2001) note that, if most

organisms are well adapted to their environments, phe-

notypic directional selection should be normally

distributed around a mean of 0. Indeed, more recent

meta-analyses of phenotypic selection have used a

folded-normal distribution to model the absolute values

of selection gradients (Hereford et al. 2004; Kingsolver

et al. 2012; Morrissey & Hadfield 2012). Multiple genetic

models of adaptation predict that the fitness effects of

adaptive mutations during a single adaptive walk will

be exponentially distributed (Orr 2005a). However, the

assumptions that underlie those predictions (i.e., a sin-

gle population adapting to a relatively close, stationary

fitness peak solely through the fixation of new muta-

tions) do not apply to our broad dataset, and other

models make different predictions about how selection

coefficients might be distributed (e.g., Kopp & Hermis-

son 2009b, who model adaptation to a moving fitness

optimum and predict a unimodal distribution with

mutations of intermediate effect dominating).

Instead of referring to disparate phenotype- or geno-

type-level theories, another way to explain the similar-

ity in these distributions could come from

understanding how selection at these levels is linked.

Selection does not act directly at the genetic level; rather

it acts on phenotypes and is then transmitted to the

genetic level based on the genetic architecture of the

trait(s) under selection. Assuming that the phenotypic

effects of an allele are proportional to its fitness effects,

it may be possible to work downward from the empiri-

cal, roughly exponential distribution of phenotypic

selection coefficients to derive an expected distribution

for genetic selection coefficients. To do so properly

would require some understanding of the number and

phenotypic effect sizes of the loci underlying the
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Fig. 4 Effect of accounting for autocorrelation and measure-

ment error, in the subset of data for which standard errors

were reported or could be calculated. The uncorrected estimate

shows the mean and 95% confidence interval of the selection

coefficient, based on 10 000 bootstrap replicates. The other esti-

mates are the posterior mode of the estimate of mean s from

the three GLMMs that incorporated measurement error (error),

study as a random factor (study ID), or both (error and study

ID). Error bars show the upper and lower bounds of the 95%

highest posterior density interval.

© 2016 John Wiley & Sons Ltd

META- ANALYSIS OF SELECTION AT THE GENETIC LEVEL 1441



selected phenotypic traits, as well as the degree of

pleiotropy. The general genetic architecture of traits

subject to selection is a topic of much debate (Rockman

2012; Lee et al. 2014). The two opposing views could be

characterized as ‘exponential-like’ (i.e., traits are con-

trolled by one or a few loci with large phenotypic

effects and many loci with small phenotypic effects)

and ‘infinitesimal’ (i.e., traits are controlled by hun-

dreds to thousands of loci of extremely small effect).

Interestingly, the observed exponential form of selection

coefficients acting on phenotypes may be transmitted to

the genetic level to produce an L-shaped (exponential-

like) distribution of selection on alleles, regardless of

whether the allelic effects on a phenotype are drawn

from an exponential or a uniform distribution, assum-

ing that the strength of selection acting on a trait does

not influence its genetic architecture and there is no

pleiotropy (see Appendix S1, Supporting information,

co-authored with S. Otto, for theory). Although some

genotype–phenotype maps transmit the exponential-like

distribution of phenotypic selection unchanged to the

genetic level, not all maps will do so. It remains

an open theoretical question to determine which geno-

type–phenotype maps are most consistent with our

observations.

The impacts of natural selection at the genetic level

varied across a number of biological and methodological

categories. Statistically significant estimates of selection

tended to be stronger than insignificant ones, which is

unsurprising given that stronger selection is easier to dis-

tinguish from drift than weak selection. The mean value

of selection coefficients that did not have estimates of

error or significance was similar to the mean of insignifi-

cant selection coefficients (Fig. 3), which may suggest

that many of these estimates are statistically insignificant.

Or course, the statistical significance of an estimate of

selection is dependent on the power of the procedures

used to estimate it. Unfortunately, analysing the power

of each study in our database was not feasible. Statistical

significance will only be indicative of the biological rele-

vance of a variant’s fitness effect with sufficient power:

underpowered studies may be unable to distinguish

selection from drift. Conversely, significant estimates

should not be misunderstood to mean that only selection

is driving allele frequency change. All alleles in finite

populations are influenced by drift; significant estimates

of s simply indicate that drift alone could not cause the

observed change. Again, we emphasize that selection

coefficients are continuous variables; it is preferable to

interpret their statistical and biological significance by

considering their confidence intervals, not their P-values

alone. And, absent knowledge of experimental power for

each study, we cannot distinguish estimates of s that are

insignificant due to neutrality from those that are insig-

nificant due to insufficient power. Thus, we caution

against overinterpreting the differences we observe

across statistical categories.

Estimates of negative selection were of greater magni-

tude than estimates of positive selection in both the full

and reduced datasets, although this difference was not

significant in the GLMM. Selection coefficients for both

forms of selection were roughly exponentially dis-

tributed (Fig. S1, Supporting information). In some

sense, comparing the magnitude and distributions of

these categories is not biologically informative, as the

designation of selection as positive or negative is rela-

tive (Box 1). The difference in magnitude between these

categories perhaps suggests research bias, with

researchers who focus on negative selection choosing to

study populations that experience slightly stronger

selection. It is reasonable to expect that experimental

manipulations may be associated with selection that is

stronger than selection that is simply observed. While

the nonparametric statistics indicated that this was the

case, the estimates of mean s for experimental and

observational studies were nearly equal in the GLMM.

The vast majority of estimates of selection from experi-

ments came from the Anderson et al. 2014 and Gompert

et al. 2014 studies, only eight other studies contributed

31 total estimates, so there is little statistical power for

firm conclusions.

Natural selection on shorter timescales tended to be

stronger than selection on longer timescales, as we

predicted. This was true in both the full and reduced

datasets, and the GLMM corroborated the trend,

although differences between some categories were

insignificant. The absolute differences in magnitude

between categories were fairly small: mean s for long-

term estimates was 0.044 in both datasets, while mean s

within a generation was ~ 39 greater (0.141) in the full

dataset and ~59 greater (0.232) in the reduced dataset.

This overall trend may be partially due to the fact that

studies over shorter time periods, and especially within

generations, are often unable to distinguish between

direct and indirect selection on a locus, which could

lead to larger estimates of s (see Box 1, Box 2). How-

ever, the patterns we see in the strength of genetic

selection coefficients are consistent with those observed

in measures of evolutionary rates and phenotypic selec-

tion. Short-term rates of phenotypic change are often

orders of magnitude greater than long-term rates (Gin-

gerich 1983), phenotypic selection on viability is stron-

ger when measured over shorter time periods

(Hoekstra et al. 2001), and long-term rates of phenotypic

evolution are often slower than one would expect when

extrapolating from short-term estimates of phenotypic

selection (Kinnison & Hendry 2001). This tendency for

evolutionary rates, phenotypic selection coefficients and
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genetic selection coefficients to be of smaller magnitude

when measured over longer periods of time is likely to

be partially a mathematical artefact of averaging that is

inherent to all measures that compare differences

between initial and final states (Gingerich 1983). Such

measures must assume that the rate of change (in the

case of s, change in allele frequencies) is constant

between measured instances and will thus average out

the instantaneous rates into a less extreme long-term

rate. However, the effects of averaging almost certainly

reflect biological reality. Meta-analysis of phenotypic

selection shows that selection may fluctuate through

time such that short-term estimates of selection are not

indicative of long-term trends (Siepielski et al. 2009; but

see Morrissey & Hadfield 2012).

This effect is illustrated in the few studies that exam-

ined selection on the same locus or loci through time.

For example, Barrett et al. (2008) found opposing pat-

terns of strong selection at different life stages on an

allele for reduced armour plating in threespine stickle-

backs, such that the lifetime s was much weaker than

the per-life-stage estimates of selection coefficients.

Anderson et al. also found negative correlations

between selection coefficients across some (but not all)

episodes of selection, indicative of fitness trade-offs

within a generation (see table 4 in Anderson et al. 2014

and our supplementary analysis). Those trade-offs did

not necessarily lead to estimates of weak lifetime selec-

tion. For example, plants in Montana experienced trade-

offs between flowering/fruiting and overwinter sur-

vival. However, selection on survival was relatively

weak and selection on both fruiting and flowering was

quite strong, leading to large estimates of lifetime s.

Perhaps the best example of how temporal variation

can affect the magnitude of selection estimates comes

from a study on drug resistance alleles in the malaria

parasite, Plasmodium falciparum (Taylor et al. 2012). The

authors calculated both annual selection coefficients

and overall selection coefficients on mutations at indi-

vidual codons across a nine-year study. Annual selec-

tion coefficients varied in magnitude and direction and

were often statistically insignificant. The selection coeffi-

cients calculated across all nine years, however, were

smaller in magnitude, statistically significant, and

favoured resistance alleles. This study could not be

included in our quantitative analyses, as the regression-

based selection coefficients they calculated were not

comparable to the other estimates in our dataset. How-

ever, it clearly demonstrates that long-term patterns of

selection are the result of fluctuating moment-by-

moment forces of selection.

The magnitude of s also varied based on the genetic

unit at which selection was measured, but interpreting

those trends is more complicated. We predicted that

selection would be stronger on haplotypes than on

SNPs, as allelic variants for haplotypes should, in gen-

eral, have larger phenotypic effects than allelic variants

of SNPs. In both the reduced dataset and the GLMM

this prediction was supported, although the difference

in mean s between these categories was not significant

in the GLMM. In the reduced dataset, the difference in

mean s was large (0.052 for SNPs, 0.121 for haplotypes).

In the GLMM, the difference was much smaller (poste-

rior mode of s = 0.086 for SNPs, s = 0.093 for haplo-

types). In the full dataset, however, selection was

stronger on SNPs, although this difference was margin-

ally not significant. Some of this inconsistency across

analyses is due to the outsized effects of the Anderson

et al. 2014 and Gompert et al. 2014 studies. Gompert

et al. 2014; in particular, measured 300 instances of selec-

tion on SNPs, and their methods were biased towards

the detection of very strong selection (Box 2). This may

have inflated the mean s for SNPs in the full dataset.

While the GLMM accounts for autocorrelation within

studies, the confidence intervals around the estimate of

mean s for both categories are quite broad, indicating lit-

tle statistical support for either interpretation. There are

also other possible hypotheses for how selection might

vary with genetic scale. For example, larger genetic units

could contain multiple loci with contrasting fitness

effects, so that they experience weaker selection that is

the average effect of the individual loci contained within

them. In that case haplotypes would tend to experience

weaker selection than SNPs, as we see in the full dataset.

Given the conflicting trends among the different data-

sets and methods of analysis, it seems that we need fur-

ther data before we can determine whether, how, and

why the strength of selection varies with genetic scale.

Recommendations for future research

In addition to our observations about the distribution

and variation of selection coefficients, our review of the

literature uncovered a number of important issues to

consider when studying natural selection at the genetic

level. First, consider that the acceptance rate for inclu-

sion in our dataset was extremely low (~3.5%). Of

course, this low rate is partly due to our inclusion crite-

ria, as we excluded some studies that quantified selec-

tion in ways that were incompatible with our analysis.

Another possible reason might have been our Web of

Science search terms. They seemed to be simultaneously

too broad (our search results included many studies on

agricultural plants, purely theoretical models, and

phenotypic selection coefficients) and ineffective at

locating studies (we found almost as many studies that

reported selection coefficients by searching references as

we did in our Web of Science searches).
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While these reasons are certainly part of the explana-

tion, we suspect that the discrepancy between the num-

ber of plausible studies and the number of studies that

report estimates of s exposes a larger issue: natural

selection is frequently invoked or detected, but very

rarely quantified, even in studies which contain raw

data from which selection coefficients could be calcu-

lated. Of course, not all biologists are interested in

quantifying natural selection, and it is understandable

that many researchers do not take this final step. How-

ever, we hope that our analysis has shown that quanti-

fying selection can lead us toward answers for

important questions in evolutionary biology. We there-

fore encourage researchers to endeavour, not only to

detect selection, but also to quantify its strength.

What, then, are the best practices for calculating,

reporting and interpreting selection coefficients? Meth-

ods for calculating selection coefficients will depend on

the type of data available to a researcher. An extensive

review of methods is beyond the scope of this work; for

specifics, we direct readers to previous reviews of meth-

ods for the detection and quantification of selection

(Linnen & Hoekstra 2009; Hohenlohe et al. 2010; Vitti

et al. 2013), to the examples cited in our introduction,

and to the papers within our literature database (see sup-

plemental material). We also note that new methods are

frequently being developed, especially methods which

estimate selection coefficients based on sequence data

(Charlesworth & Wright 2004; Slatkin 2008; Messer &

Neher 2012; Chen & Slatkin 2013; Vitalis et al. 2014; Foll

et al. 2015). Whatever method is used, researchers should

take careful note of the mathematical model used to cal-

culate s so that its biological meaning is clear. Of particu-

lar importance is understanding whether models

calculate positive selection or negative selection, as these

quantities are not directly comparable without a conver-

sion (see Box 1). Further, researchers should calculate

statistical significance, ideally from some form of confi-

dence interval, and be cognizant of the specific statistical

issues particular to their data (e.g., considerations of

multiple testing, linkage between sites, and/or popula-

tion structure). When feasible, researchers should also

seek to calculate or determine other parameters that will

aid in the interpretation of selection coefficients. These

include experimental power (to establish the minimum s

that could be reliably detected), source of genetic varia-

tion (i.e., standing genetic variation or new mutations),

effective population size, and the ancestral allelic state of

the locus under selection.

At minimum, researchers should clearly report (i) the

model used to calculate s, (ii) some form of confidence

interval for the estimate of s, and (iii) the data neces-

sary to understand the time period over which selec-

tion was measured (ideally in generations). Researchers

should report both significant and insignificant esti-

mates to reduce publication bias. As genomic data

become more available, the question of whether to cal-

culate selection coefficients on all loci versus only those

that show evidence of selection will become more

important. This decision will depend, at least in part,

on the interests and computational resources of the

researcher. When calculating selection for all loci is not

feasible, we recommend researchers follow the example

of Gompert et al. (2014) by clearly stating the selection

criteria for quantified loci.

We also strongly recommend that researchers report

estimates of effective population size, which aids in

interpreting the strength of selection. Information about

the source of genetic variation and levels of linkage dis-

equilibrium in the population tested is also valuable, as

levels of LD can determine the extent to which

researchers can partition genetic selection as direct or

indirect. This complication arises in the application of

one-locus models of selection, which assume that s rep-

resents direct selection, to natural populations in which

allelic variants are also influenced by selection on

linked loci and s should properly be interpreted as

quantifying both direct and indirect selection. Models

used to study genomewide selection often have more

parameters (genetic variants) than statistical replicates

(individuals), inhibiting the ability to measure direct

selection (Gompert et al. 2014). Linkage disequilibrium,

epistasis and pleiotropy can all complicate the simple

goal of measuring the direct fitness effects of an allele

and muddle the distinction between direct and indirect

selection (Barton & Servedio 2015). Further theoretical

work to address these issues will be especially wel-

come. Nevertheless we note that, in many cases, quan-

tification of direct selection is not necessarily the

ultimate goal. Understanding direct selection is crucial

for elucidating the genetic and phenotypic mechanisms

that drive adaptive evolutionary change. However, the

total amount of selection (both direct and indirect) that

impacts a locus is what drives allele frequency change

each generation, and understanding it is more impor-

tant for predicting the trajectory of evolution.

Conclusions

Our analysis has taken important first steps towards

improving our understanding of the impacts of selec-

tion at the genetic level. Where should researchers

direct their attention with future studies of selection at

the genetic level? Keeping in mind our methodological

guidelines above, simply accumulating more estimates

of selection will be extremely useful. Our conclusions

are necessarily limited by the data that have been pub-

lished so far, and the practice of estimating genetic
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selection coefficients is still rather young. More esti-

mates of selection from a wider variety of taxa are

needed for a fuller understanding of how natural selec-

tion shapes genetic variation. Fortunately, technological

advances in collecting and analysing genetic data make

it possible to quantify selection without requiring a

priori knowledge of selection, and to do so in the con-

text of manipulative field experiments. And, as with

phenotypic selection, it will be informative to consider

how selection coefficients vary with space, time, and

across sexes and life-history stages. Such studies will

give insight into fundamental questions about local

adaptation, developmental trade-offs, and sexual con-

flict. We expect that, in the coming years, the number

and scope of studies that quantify selection at the

genetic level will rapidly increase. With larger datasets,

future researchers will be able to more conclusively

answer the questions we have begun to consider here.
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