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Abstract

Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the
face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural
populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we ex-
plore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic archi-
tecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We
quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2
crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels
across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number
of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlap-
ping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the
genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a po-
tential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis
of population epigenomic variation.

Keywords: epigenetics; reduced representation bisulfite sequencing; intergenerationally stable methylation; meQTL; Gasterosteus acu-
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Introduction
DNA methylation is a chemical modification to DNA that typi-

cally occurs at cytosines within CpG dinucleotides in animals

(Suzuki and Bird 2008). It has been suggested that DNA methyla-

tion can play a number of biological roles, including gene expres-

sion regulation (expression, repression, alternative splicing, and

spurious transcription prevention), cell-fate decision, and pheno-

typic evolution and adaptation to divergent environments (Bird

2007; Bossdorf et al. 2008; Maunakea et al. 2010; Feil and Fraga

2012; Jones 2012; Verhoeven et al. 2016; Neri et al. 2017; Richards

et al. 2017). Recent genome-wide studies have revealed that DNA

methylation variation is widely observed between closely related

animal species and populations that have adapted to ecologically

divergent environments (Massicotte et al. 2011; Liebl et al. 2013;

Smith et al. 2015; Lea et al. 2016; Artemov et al. 2017; Le Luyer et al.

2017; Hu et al. 2018, 2019; Laporte et al. 2019; Heckwolf et al. 2020).

In addition, methylation variation has been shown to have a

substantial heritable component that selection can act on (Lim
and Brunet 2013; Heard and Martienssen 2014; Taudt et al. 2016).
Modification of the methylome may therefore be an important
mechanism underlying phenotypic variation, adaptive evolution,
and possibly ecological speciation (Jaenisch and Bird 2003; Turck
and Coupland 2014; Verhoeven et al. 2016).

While theoretical studies have suggested that the evolutionary
relevance of methylation variation is partially related to its heri-
tability, experimental studies investigating heritable DNA meth-
ylation and its role in adaptive evolution are in their initial stages
(Verhoeven et al. 2016; Hu and Barrett 2017; Richards et al. 2017).
Although it is clear that DNA methylation levels can sometimes
be intergenerationally stable (Jablonka and Raz 2009; Daxinger
and Whitelaw 2012; Heard and Martienssen 2014), results have
mainly come from plant studies, and the small number of animal
studies have typically used isogenic lab lines (Morgan et al. 1999;
Rakyan et al. 2003; but see Nätt et al. 2012; Weyrich et al. 2016,
2018; Heckwolf et al. 2020). The homogenous genetic backgrounds
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of these isogenic lines may mean that they are not representative
of the methylation patterns occurring in more genetically hetero-
geneous populations (Herman et al. 2014; Verhoeven and Preite
2014). In addition, most studies in nonmodel species have so far
been limited to describing broad patterns based on anonymous
markers of DNA methylation (Schrey et al. 2013; Hu and Barrett
2017; Richards et al. 2017), which has hindered understanding of
the functional relevance and genetic basis of stable methylation
in these species.

Methylation variation is mainly under genetic control, which
can be caused by DNA sequence variation in both cis- and trans-
regulatory elements (Taudt et al. 2016; Hu and Barrett 2017).
Recently, methylation quantitative trait loci (meQTLs) analysis
has found both cis- and trans-acting genetic variants underlying
methylation variation (Dubin et al. 2015; Orozco et al. 2015;
Kawakatsu et al. 2016; Meng et al. 2016; Taudt et al. 2016). Cis-reg-
ulatory genetic variation typically affects methylation patterns of
only one or a few nearby sites and is less pleiotropic, whereas ge-
netic variants in trans-regulatory elements can simultaneously
change the methylation levels of multiple sites (Taudt et al. 2016;
Do et al. 2017; Schulz et al. 2017; Hannon et al. 2018; Gupta et al.
2019). However, with the exception of a few studies (Fan et al.
2019) almost all meQTL studies have been conducted in model
species, and thus, the prevalence of cis- and/or trans-meQTLs,
and their role in adaptive evolution in natural populations
remains unclear.

To explore the stability of epigenetic modification between
generations, and to study the genetic architecture of methylation
variation between natural populations adapted to distinct envi-
ronments, we used threespine stickleback (Gasterosteus aculeatus),
an abundant fish species in both marine and freshwater habitats
in the Northern Hemisphere. Since the end of the last ice age,
marine stickleback colonized freshwater lake and stream habi-
tats that were uplifted and landlocked, resulting in replicate
freshwater populations that show repeated evolution of a suite of
locally adapted traits (Bell and Foster 1994). The repeated adap-
tive divergence between marine and freshwater populations
makes this a powerful system to study the ecology and genetic
architecture of adaptation (Jones et al. 2012). In the last decade, a
variety of genetic and genomic resources have been developed
for this species (Baird et al. 2008; Hohenlohe et al. 2010; Jones et al.
2012; Ishikawa et al. 2017; Peichel and Marques 2017). In addition,
genome-wide methylation variation between marine and fresh-
water populations (Smith et al. 2015) and between males and
females (Metzger and Schulte 2018) have been characterized, as
well as the demonstration of methylation responses to environ-
mental change (Artemov et al. 2017; Metzger and Schulte 2017;
Heckwolf et al. 2020). However, the intergenerational stability of
methylation in stickleback, and the genetic architecture underly-
ing methylation variation between marine and freshwater eco-
types, remain unclear.

We address these gaps by performing an epigenomic survey of
fin tissue from sticklebacks under a common garden experimen-
tal design with controlled crosses. We first examined methylation
divergence between marine and freshwater ecotypes. We then
explored levels of methylation and its genetic basis across two
generations of the marine-freshwater hybrid lines, and per-
formed meQTL analysis with two F2 families to characterize the
genetic architecture of methylation variation between ecotypes.
We investigate four specific questions: (1) Is variation in DNA
methylation stable between generations? (2) What is the genetic
heritability of intergenerationally stable CpG sites? (3) What is
the genetic architecture of DNA methylation differences between

the stickleback ecotypes? (4) What are the relative contributions
of cis- and trans-meQTLs to DNA methylation differences?
Answering these questions will help to provide a baseline for un-
derstanding the heritability of methylation variation, and the role
of methylation variation in facilitating population persistence
and potentially local adaptation in natural populations.

Materials and methods
Sampling and husbandry
We collected adult threespine stickleback from one marine
(Bamfield Inlet [BI], 48�49’12.6900N, 125� 8’57.9000W), and two
freshwater (Hotel Lake [HL], 49�38’26.9400N, 124� 3’0.6900W, and
Klein Lake [KL], 49�43’32.4700N, 123�58’7.8300W) locations in
Southwestern British Columbia, Canada in May 2015 (Figure 1).
We transported all fish to an aquatic facility at the University of
Calgary, and separated them into population-specific 113 L glass
aquaria. We maintained a common garden environment at a
density of approximately 20 fish per aquarium, salinity of 4–6
ppt, water temperature of 15�C 6 2�C, and a photoperiod of
16 L:8 D for one year before making crosses. This period of time
should minimize any effects of transportation and allow suffi-
cient time for marine populations to acclimate to hypoosmotic
conditions (McCairns and Bernatchez 2010; Morris et al. 2014;
Wang et al. 2014; Artemov et al. 2017). We kept each aquarium as
a closed system with its own filter, air pump, water supply, and
temperature regulator. We fed all fish ad libitum once per day
with thawed bloodworms (Hikari Bio-Pure Frozen Bloodworms).

Crossing design
Threespine stickleback are typically found in either marine or
freshwater habitats, but distinct marine and freshwater ecotypes
can hybridize, which can facilitate the detection of associations
between genotype and phenotype (Ishikawa et al. 2017; Peichel
and Marques 2017; Verta and Jones 2019). We generated

Figure 1 Geographical location of threespine stickleback populations
used in this experiment. Triangle indicates the marine sampling site,
squares indicate freshwater sampling sites. BI, Bamfield Inlet (marine);
HL, Hotel Lake (freshwater); KL, Klein Lake (freshwater). The red square
in the inset shows the location of sampling sites in relation to the
broader geographic region (the west coast of Canada).
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genetically heterogeneous marine-freshwater F1 families from
wild-caught parents by collecting eggs from one marine female
and extracting testes from one freshwater male per cross
(Supplementary Figure S1). To generate a cross, we first equally
distributed the eggs into a Petri dish containing fresh water. We
then euthanized the male using an overdose of eugenol
(>400 mg/L) and removed the testes. We crushed the testes in a
Petri dish, with the water activating the released sperm and
allowing fertilization. Fertilized eggs were left within the Petri
dish for 20 min before being suspended in a well-aerated mesh-
bottom container within 37 L glass aquaria, with an air stone for
oxygenation and a sponge filter. In total, we produced one F1
family of BIxHL hybrids (hereafter referred to as HL_F1), and
three F1 families of BIxKL hybrids (hereafter referred to as KL_F1).
After hatching, the larval fish from the same family were reared
in the same 37 L aquaria until reaching approximately 1 cm total
length (TL), at which time the families were equally split into
aquaria to maintain low densities. The fish and fry were fed twice
daily with live Artemia spp. nauplii. At approximately 2 cm TL, ju-
venile stickleback fish were transitioned to a diet of chopped
thawed bloodworms once per day ad libitum. They were then tran-
sitioned to an adult diet of full thawed bloodworms gradually.
We sampled caudal fin clips (hereafter referred to as “fin clips”)
when individuals reached a 3.5 cm TL or more. In addition to the
fish we used to generate the F1 crosses, we also sampled extra
parental fish from the same marine or freshwater population. Fin
clips were stored in 70% ethanol in microcentrifuge tubes at
room temperature until extraction of genetic material.

To generate F2 families, we randomly selected and crossed
one male and one female sibling within an F1 family from each
hybrid line (HL or KL) using the same crossing methods. We pro-
duced one F2 family of HL hybrids (hereafter referred to as
HL_F2) and one F2 family of KL hybrids (hereafter referred to as
KL_F2). Fish were raised as described above. We randomly se-
lected fish from HL_F2 and KL_F2 families, and sampled fin clips
when an individual reached approximately 3.5 cm TL. We stored
all fin clips as described above. In addition to the fish we used to
make the F2 crosses, we also randomly sampled extra F1 fish
from all F1 families. In total, we sampled 94 fish, including 11 pa-
rental fish (six marine females; two HL and three KL freshwater
males), 19 F1 fish (7 HL_F1 and 12 KL_F1), and 64 F2 fish (28
HL_F2 and 36 KL_F2). Detailed information about sex and family
is included in Supplementary Table S1. All sampling, crossing,
and housing protocols were approved by the University of
Calgary Life and Environmental Science Animal Care Committee
(AC13-0040 and AC17-0050) following the ethical standards
maintained by the Canadian Council for Animal Care.

Tissue choice
The choice of tissue used for genome-wide mapping of cytosines
can influence the interpretation of methylation patterns (Stricker
et al. 2017). We conducted our analyses using caudal fin tissue for
several reasons. It has been shown that fin position, caudal fin
depth, and caudal fin size are different between marine and
freshwater stickleback, and that these phenotypic differences are
heritable and associated with repeated adaptation to divergent
marine and freshwater environments (Walker 1997; Jones et al.
2012). Because methylation is tissue-specific, choosing a tissue
showing phenotypic differences between ecotypes increases the
likelihood of finding meQTLs that contribute to this ecotype di-
vergence. Caudal fins can also be dissected quickly and consis-
tently, and the excision of fin tissue does not affect survival.

DNA extraction and sex determination
We extracted DNA from caudal fin using phenol: chloroform: iso-
amyl alcohol (25:24:1), and assessed the quality and quantity us-
ing Tecan InfiniteVR 200 NanoQuant and Quant-iT PicoGreenVR

dsDNA assay kit (ThermoFisher Scientific). We determined the
sex of fish following Peichel et al. (2004).

Reduced representation bisulfite sequencing
To measure genome-wide DNA methylation levels, we used re-
duced representation bisulfite sequencing (RRBS) (Meissner et al.
2008; Gu et al. 2011), following Boyle et al. (2012) with some minor
modifications. For each individual, we created a library from
120 ng of genomic DNA, and ligated the MspI-digested fragments
in each library with unique Illumina TruSeq adapters. We tar-
geted fragments of 160–340 bp (including �120 bp of adapter se-
quence) using NaCl-PEG diluted SpeedBeads (Rohland and Reich
2012). We split the libraries into four pools (three pools of 24 li-
braries and one pool of 22 libraries), and treated the pools with
sodium bisulfite (EpiTect, Qiagen) following a protocol for
formalin-fixed paraffin-embedded samples (Gu et al. 2011). After
two rounds of bisulfite treatment to ensure complete conversion
of unmethylated cytosines, each pool was amplified with
Illumina primers, and loaded in four lanes (100-bp single-end
reads) of a Hiseq 2500 at the McGill University and Genome
Quebec Innovation Centre. In total, we sequenced all 94 fish sam-
pled across three generations (Supplementary Table S1). Each
sample was sequenced to a mean depth (6SD) of 8.094 6 2.532
million reads.

Read filtering and mapping
To remove adapter contamination, low-quality bases, and bases
artificially introduced during library construction, we trimmed
reads using Trim Galore! v0.4.4 (https://www.bioinformatics.bab
raham.ac.uk/projects/trim_galore/), with the “rrbs” option. We
then used the program Bowtie2 v2.2.9 (Langmead and Salzberg
2012), implemented in Bismark v0.17.0 (Krueger and Andrews
2011) to align trimmed reads for each sample to the stickleback
genome (ENSEMBL version 98) with default settings, except for
tolerating one non-bisulfite mismatch per read. We only included
reads that mapped uniquely to the reference genome, and cyto-
sines that had at least 10x coverage in downstream analyses. The
average mapping efficiency (percentage of uniquely mapped
reads among all reads) was 61.4 6 4.7% (6 SD). We quantified
methylation at non-CpG motifs and found less than 1% non-CpG
cytosines were methylated, suggesting a highly efficient bisulfite
conversion. Only CpG context cytosine methylation was analyzed
because CpG methylation is the most common functional meth-
ylation in vertebrates (Suzuki and Bird 2008).

General methylation patterns
To identify general methylation patterns, we first performed a
principal component analysis (PCA) on methylation levels in all
samples using the prcomp function in R (R Core Team, 2018,
v3.4.3). We ran the analysis by first identifying cytosines that
were covered in all samples using the R package methylKit v1.4.1
(Akalin et al. 2012). Read coverage was then normalized between
samples, using the median read coverage as the scaling factor. A
minimum of ten reads in all samples was required at a CpG site
for that site to be analyzed. We removed CpG sites that were in
the 99.9th percentile of coverage from the analysis to account for
potential PCR bias. We calculated the methylation levels by
extracting the total amount of methylation-supporting reads,
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and the total coverage of each CpG site, using the percMethylation
function in the R package methylKit. To improve methylation
estimates, we corrected for SNPs, which could have resulted in
an incorrect methylation call if C-to-T and G-to-A SNPs were
falsely interpreted as unmethylated cytosines, following
Heckwolf et al. (2020). We first identified SNPs using the methyla-
tion value of each CpG site of all 11 parental individuals for input
to Bis-SNP v0.82.2 (Liu et al. 2012) with the default parameters.
Because Bis-SNP is sensitive to the directionality of the RRBS pro-
tocol (i.e. whether sequenced reads come from the original for-
ward and reverse strands when calling C-to-T and G-to-A SNPs),
we used a directional bisulfite-seq protocol that is similar to
Krueger et al. (2012). We chose parental samples for identifying
SNPs because they are the genetic source of the F1s and F2s, and
are the most genetically heterogeneous samples. We used
GATK’s VariantFiltration and SelectVariants to restrict variants
to diallelic sites, and filter variants based on the following GATK
variant annotation cut-offs: QD < 2.0, MQ < 40.0, MQRankSum <

�12.5, and ReadPosRankSum < �8.0. We then used VCFtools
v0.1.16 (Danecek et al. 2011) to remove SNPs with a minor allele
frequency (MAF) greater than 0.0049 (Heckwolf et al. 2020), and
more than 10% missing data across all 11 parental samples.
Using MAF thresholds from 0.001 to 0.01 resulted in similar num-
bers of filtered SNPs. We calculated pairwise weighted Fst be-
tween BI, HL and KL fish in the parental generation using
VCFtools on filtered SNPs. We produced a list of positions (C-to-T
and G-to-A SNPs) for correcting methylation estimates, using
custom written Perl scripts from Heckwolf et al. (2020) and the R
package GenomicRanges v.1.30.3 (Lawrence et al. 2013). In addi-
tion, it has been suggested that sex specific methylation affects
less than 0.1% of CpG sites on autosomal chromosomes, but
more than 5% of CpGs on the sex chromosome in stickleback
(Metzger and Schulte 2018). Therefore, to exclude a potential sex
bias, we removed all CpGs located on the sex chromosome (group
XIX). In total, we retained 52,940 CpG sites that passed the filter-
ing step. To perform PCA, methylation levels at each CpG site
were taken as input variables, whereas each point in multidimen-
sional space represented a stickleback individual. Finally, to com-
pare DNA methylation variation levels between F1 and F2 fish in
each hybrid line, we calculated DNA methylation levels in 7,840
1-kb tiling windows (step ¼ 1 kb; size ¼ 1 kb) compiled from the
same 52,940 CpG sites, and compared the standard deviations of
methylation levels for each genomic window within each hybrid
line.

Analysis of methylation divergence between
ecotypes
To examine methylation divergence between ecotypes, we per-
formed a differential methylation analysis between marine and
freshwater populations from the parental generation, using the
52,940 CpG sites that passed the filtering step above. CpG sites
were considered to be differentially methylated cytosines (DMCs)
with a false discovery rate correction Q-value < 0.01 and a mini-
mum required methylation difference of 15% between ecotypes,
using the R package methylKit with sampling site (i.e. BI for the
marine population, and KL and HL for the freshwater popula-
tions) as a covariate. We visualized differential methylation pat-
terns across individuals and obtained clustering of samples and
DMCs in heatmaps with the “complete” clustering method on
Euclidian distances, using the R package heatmap version 1.0.8
(https://cran.r-project.org/web/packages/pheatmap/index.html).
We clustered hyper- and hypo-methylated DMCs between eco-
types using relative percent DNA methylation, which is the

normalized percent DNA methylation scaled for each DMC’s per-
cent DNA methylation (median percent methylation as 0) of ma-
rine and freshwater fish in heatmaps. We also clustered
individual fish based on overall methylation patterns across
DMCs. We then analyzed the proportion of cytosines within geno-
mic features [promoter/exon/intron/intergenic; promoters are
defined as regions being upstream 1000 bp and downstream
1000 bp around the transcription start sites (TSSs)] for DMCs, us-
ing the R package genomation v1.6.0 (Akalin et al. 2015). Because
MspI restriction sites are not randomly distributed in the genome,
we built a null distribution of genomic features based on all fil-
tered CpG sites (i.e. 52,940 CpG sites). We gave precedence to pro-
moters > exons > introns > intergenic regions when features
overlapped (Smith et al. 2015; Hu et al. 2018). Finally, we anno-
tated genes associated with DMCs, using the R packages biomaRt
v2.34.2 (Durinck et al. 2005, 2009) and ChIPpeakAnno v3.12.7 (Zhu
et al. 2010; Zhu 2013) on the stickleback reference genome from
Ensembl 98 database, and performed gene ontology (GO) analysis
on DMC-associated genes, using the R package topGO v2.28.0
(Alexa et al. 2006). Over-represented GO terms were those with
multiple-test corrected P-values (Benjamini-Hochberg’s false dis-
covery rate) below 0.1, based on a Fisher’s exact test. We com-
pared DMC-associated genes with the genes associated with the
52,940 CpGs that passed the filtering step.

Analysis of intergenerationally stable
methylation
We considered a CpG as intergenerationally stable when the CpG
was not significantly differentially methylated between F1 and F2
generations of the same family within the same hybrid line (HL
or KL) and fulfilled this criterion in both hybrid lines. Note that
these “stable” sites are not necessarily “heritable” in the sense of
methylation variation between individuals being due to additive
genetic factors. DMCs between fish in F1 versus F2 generations
were identified using the same method as described above for
identifying DMCs between ecotypes, with sequencing lane as a
covariate. We identified 137 and 82 DMCs within HL and KL hy-
brid lines, respectively. These sites were removed from the 52,940
CpG sites that passed the filtering step to provide a final dataset
of 52,729 intergenerationally stable CpG sites for downstream
analysis. We clustered fish based on the similarity of their DNA
methylation profiles, with the “ward” clustering method on
Pearson’s correlation distances, using the clusterSamples function
in the R package methylKit. We also compared the locations of
DMCs between ecotypes with the locations of intergenerationally
stable CpG sites to assess which of the sites involved in methyla-
tion divergence between ecotypes are stable across generations.

Our criterion for identifying CpG sites with intergenerationally
stable methylation is such that a type 2 error in our differential
methylation test between generations (a false negative for differ-
ential methylation between F1 and F2 within a line) will lead to a
false positive for stable methylation. To investigate the potential
importance of this type of error in our data, we conducted a
power analysis using a simulated data set in methylKit, following
Wreczycka et al. (2017) with some minor modifications. To be
conservative, our simulated dataset consisted of eight samples
(four F1s and four F2s, matching the minimum number of fish in
a line from each generation in the empirical dataset). We mod-
eled the read coverage following a binomial distribution and de-
fined the methylation levels following a beta distribution with
parameters alpha ¼ 0.4, beta ¼ 0.5, and theta ¼ 10. We ran simu-
lations of differential methylation at 1% of 52,940 CpG sites, with
effect sizes of 5%, 10%, 15%, 20% and 25% differential
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methylation, respectively. After correcting for the covariate of se-

quencing lane (the same sequencing lane was assigned to two

samples within F1 or F2 generation, for a total of four sequencing

lanes), we adjusted P-values for multiple testing using the Q-

value method (Storey and Tibshirani 2003), and considered CpGs

to be DMCs with a false discovery rate correction Q-value < 0.01.

Finally, we calculated the proportion of CpGs that were falsely

identified as non-DMCs (false negatives) among all CpG sites un-

der each effect size (5–25%) above.
We distinguished between three categories of methylated sites

that were stable between F1 and F2 generations: (1) constitutively

hypermethylated sites, which are CpG sites with average DNA

methylation levels greater than 0.9 in all samples, (2) constitu-

tively hypomethylated sites, which are CpG sites with average

DNA methylation levels less than 0.1 in all samples (Lam et al.

2012; Lea et al. 2016), and (3) methylated sites with average DNA

methylation levels between 0.1 and 0.9 (hereafter referred to

“variable sites”). Finally, we analyzed the proportion of cytosines

within genomic features for CpG sites in each category and anno-

tated genes associated with all intergenerationally stable CpG

sites by testing for overlap between the locations of CpG sites and

genomic regions of genes, following the same method as de-

scribed above for ecotype DMCs.

Heritability of stable methylation
To determine the genetic heritability of the intergenerationally

stable CpG sites across F1 and F2 generations, we first identified

SNPs using the aligned reads of all F1 and F2 individuals for input

to Bis-SNP, following the same SNP calling and filtering steps as

described above with some minor modifications. We retained

three sets of SNPs by filtering the 92,983 SNPs using a constant

MAF cut-off (0.005) and three missing data cut-offs (10%, 30%,

and 50%) across all F1 and F2 individuals. We used BCFtools

(https://github.com/samtools/bcftools) to exclude sites that were

in linkage disequilibrium (LD, pairwise r2> 0.8 within a window of

1 Mb) or on the sex chromosome. Finally, we used a linear mixed

model implemented in PyLMM (http://genetics.cs.ucla.edu/

pylmm/index.html) to test whether variation at SNPs is signifi-

cantly associated with methylation levels at stable CpG sites in

F1 and F2 generations, after correcting for sequencing lane varia-

tion and kinship based on the SNP data. We adjusted multiple-

test P-values using Benjamini-Hochberg’s false discovery rate

and considered an association to be significant when the cor-

rected P-value < 0.05.
We estimated the narrow-sense heritability of DNA methyla-

tion levels for individual CpG sites of all F1 and F2 individuals us-

ing a linear mixed model approach (Yang et al. 2010)

implemented in the R package lmmlite (https://github.com/kbro

man/lmmlite). We treated the methylation levels at individual

CpG sites of all F1 and F2 individuals as phenotypes, and as-

sumed each phenotype y can be modeled as y 5 1nl 1 u 1 e,

where the random variable u follows a normal distribution cen-

tered at zero with variance rg
2K, and e represents an indepen-

dent noise component with variance re
2. The matrix K is the

same kinship matrix as calculated above. For each trait we esti-

mated rg
2 and re

2 using the restricted maximum likelihood

(REML) approach, with correction for the covariate of sequencing

lane, and calculated the heritability as h2 ¼ rg
2/(rg

2 þ re
2).

Finally, we calculated the average heritability by taking the mean

of heritability values of all CpG sites.

meQTL analysis
To identify the genetic architecture of methylation divergence be-
tween marine and freshwater stickleback, we performed meQTL
mapping of the methylome in two F2 families of marine-
freshwater hybrids. Due to the distinct methylation patterns that
may be caused by genetic variation between the two hybrid lines
(Supplementary Figure S2), we performed mapping separately for
each hybrid line. We retained SNPs that were not located on the
sex chromosome, had less than 10% missing data, and had low
LD in HL_F2 or KL_F2 samples, using the same SNP filtering steps
as described above. We then compiled a percentage methylation
level matrix among HL_F2 or KL_F2 samples containing the
52,940 CpG sites that passed these filtering steps. Finally, we
truncated these sites by the 10% minimum range of methylation
variation across samples to reduce non-informative sites that
could possibly inflate test statistics and create spurious SNP-CpG
pairs. After filtering, we retained 525 SNPs and 27,614 CpGs in
HL_F2, and 330 SNPs and 27,039 CpGs in KL_F2 for meQTL analy-
sis, with no overlap between the retained SNPs in each line. We
tested all genome-wide SNP-CpG pairs using the R package
MatrixEQTL v2.2 (Shabalin 2012). This package enables rapid
computation of QTLs by only retaining those that are significant
at a pre-defined threshold. We fit an additive linear model to test
if the number of alleles (coded as 0, 1, 2) predicted percentage
DNA methylation levels (value ranging from 0 to 1) at each CpG
site, including sequencing lane as a covariate. We used a
Bonferroni-corrected multiple-test corrected threshold, set it to
genome-wide significance for GWAS and divided by the number
of CpG sites tested (i.e. HL_F2: 5� 10�8/27,614¼ 1.81� 10�12;
KL_F2: 5� 10�8/27,039¼ 1.85� 10�12). We chose this stringent
threshold to call meQTLs to minimize the possibility of false posi-
tives (Orozco et al. 2015). We calculated the distance between a
SNP and a CpG site within a significant meQTL and defined a SNP
as cis-acting if the SNP was located within 1 Mb from its associ-
ated CpG site or trans-acting if the SNP was located more than
1 Mb from its associated CpG site (Zhang et al. 2014). We then per-
formed GO analysis on genes associated with unique SNPs within
significant meQTLs and identified over-represented GO terms,
using the same method as described above. The gene pools
against which we compared the unique SNPs were the genes as-
sociated with the SNPs that passed the filtering step. Because pre-
vious studies have suggested that meQTLs and expression QTLs
(eQTLs) are likely to co-occur in close genomic proximity, we
compared locations of significant meQTLs in our study to signifi-
cant eQTLs identified in Ishikawa et al. (2017), which also used a
marine-freshwater hybrid design. Ishikawa et al. (2017) identified
eQTLs under a range of salinities, but we only used eQTLs that
they identified under 3.1 ppt, which is a similar salinity level to
our experimental conditions. Finally, to investigate the role of
meQTLs in adaptation to different habitats in stickleback, we
compared locations of unique SNPs within significant meQTLs to
previously documented regions of parallel genomic divergence
between marine and freshwater sticklebacks (Hohenlohe et al.
2010; Jones et al. 2012; Terekhanova et al. 2014), and identified ge-
netic architecture of DMCs between ecotypes by comparing the
locations of DMCs and unique CpG sites associated with signifi-
cant meQTLs. In addition to performing the meQTL analyses us-
ing MatrixEQTL as described above, we also validated meQTL
results within each hybrid line using the R package R/qtl v.1.46-2
(Broman et al. 2003) with default settings, except for rescaling the
basepair positions of SNPs by multiplying by a constant of
3.11� 10�6 due to the genome-wide recombination rate of
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3.11cM/Mb in stickleback (Roesti et al. 2013). We calculated
genome-wide logarithm of the odds (LOD) thresholds through

1000 permutations, using the n.perm function in the R package R/
qtl and set the 95th percentile LOD score as the significance

threshold (Höglund et al. 2020).

Data accessibility
Raw Illumina sequencing reads for the 94 analyzed individuals

can be downloaded from the NCBI Short Read Archive (BioProject
ID: PRJNA587332). The cytosine coverage files (.cov) for the 94 an-

alyzed individuals and codes used for analyses in this study are

available through Github (https://github.com/barrettlabecoevo
geno/Heritability_DNA_methylation_sticklebacks). Additional

Supplemental material is available at figshare (https://doi.org/10.
25386/genetics.13481877).

Results
General methylation patterns
To identify general methylation patterns, we performed PCA on
the methylation levels of filtered CpG sites represented in all

samples (Figure 2). PC1 reflected sequencing lane chemistry
(Supplementary Figure S2) and so we included sequencing lane

as a covariate in all downstream analyses. When analyzing all
samples, PC2 (variance explained: 5.1%) clearly separated paren-

tal and F2 samples, with F1 samples filling the intermediate space
between parental and F2 samples. Furthermore, the PCA separated

the samples by sire (HL vs. KL) in F1 populations along PC3, which
accounted for 3.2% of the variance observed in the data set
(Figure 2A). In the parental fish, the PCA separated samples mainly
by their habitat along PC3 (Figure 2B), whereas the F1 generation
showed clustering based on family along PC2 (Figure 2C). The PCA
also revealed some clustering between the HL and KL hybrid lines
in the F2 generation, although there is no clear separation between
lines (Figure 2D). Within families, we found significantly higher
mean DNA methylation variance in the F2 generation than the F1
generation of families in the HL line (W¼ 2.94� 107;
P¼ 5.61� 10�6), but not the KL line (W¼ 3.08� 107; P¼ 0.775).

The average pairwise Fst calculated between populations was
0.03 (BI vs. HL), 0.04 (BI vs. KL), and 0.01 (HL vs. KL). These values
are comparable to what has been reported between other marine
and freshwater populations of stickleback using SNPs extracted
from RAD-seq (e.g. Hohenlohe et al. 2010; Catchen et al. 2013;
Lescak et al. 2015; Garcia-Elfring et al. Unpublished) and whole ge-
nome sequencing (Shanfelter et al. 2019), suggesting that our use
of SNPs identified from RRBS should not bias estimates of genetic
differentiation relative to other methods.

Methylation divergence between ecotypes in the
parental generation
We identified 891 DMCs between parental fish sampled from ma-
rine versus freshwater habitats after false discovery rate correc-
tion. Based on Euclidean distances, individual fish clustered by
their ecotypes, with the freshwater fish further clustered by their

Figure 2 Principal component analysis (PCA) of DNA methylation profiles based on all CpG sites after filtering (see Methods) in (A) all individuals from
parental, F1 and F2 generation, (B) parental generation, (C) F1 generation, and (D) F2 generation. Line: Sampling site of parental fish in generation P,
parental sire of fish in the F1 generation, and grandparental sire of fish from the F2 generation.
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sampling site (HL vs. KL; Figure 3A). When analyzing the methyl-
ation patterns of the 891 CpGs across generations, we found two
major clusters, with the first cluster only including marine fish
from the parental generation, and the second cluster including
all freshwater fish from the parental generations and all F1 and
F2 hybrids (Supplementary Figure S3). When comparing the
mean methylation levels of the 891 ecotype DMCs in F1s versus
parents, we found that in both hybrid F1 lines, there was a sig-
nificantly greater number of CpG sites with methylation levels
that were intermediate between the values of the parents than
the number of CpG sites with methylation levels outside the val-
ues observed in the parents (KL_F1: G¼ 294, df ¼ 1,
P< 2.20� 10�16; HL_F1: G¼ 124, df ¼ 1, P< 2.20� 10�16). In the F2
generation, we observed a greater proportion of sites showing
methylation values outside the range observed in their F1
parents relative to the pattern between F1s and their wild
parents (KL_F2: G¼ 241, df ¼ 1, P< 2.20� 10�16; HL_F2: G¼ 9.72,
df ¼ 1, P¼ 1.82� 10�3). In addition, we found a marginally
greater proportion of sites showing bias in methylation levels to-
ward those of the mother in HL_F1 (G¼ 4.10, df ¼ 1, P¼ 0.0428)
but not KL_F1 (G¼ 0.576, df ¼ 1, P¼ 0.448) when compared to the
parental generation. However, sex is confounded with parental
habitat in this comparison (marine fish are always female, and
freshwater fish are always male). This confounding effect is not
present in the F1 generation, where the same analysis found a
marginally greater proportion of sites showing bias toward the
F1 mother in KL_F2 (G¼ 3.85, df ¼ 1, P¼ 0.0497) but not HL_F2
(G¼ 0.0627, df ¼ 1, P¼ 0.802).

Identified DMCs between ecotypes showed no significant bias
toward hyper- versus hypomethylation (430 hypermethylated
and 461 hypomethylated DMCs; G¼ 1.21� 10�3, df ¼ 1, P¼ 0.972).
However, we found significantly more DMCs within introns
(G¼ 8.87, df ¼ 1, P¼ 2.90� 10�3) and significantly fewer within
promoters (G¼ 24.5, df ¼ 1, P¼ 7.33� 10�7) when compared to the

null distribution of all filtered sites (Figure 3B). In addition, we
found no overlap between the locations of the 891 DMCs and the
locations of sex-biased DMCs identified in Metzger and Schulte
(2018), suggesting that removing CpGs located on the sex chro-
mosome effectively minimized any potential sex-biased differen-
tial methylation. In total, DMCs mapped to 228 genes, with some
genes having been shown to be associated with differential ex-
pression or methylation between ecotypes in recent studies (e.g.
differentially expressed genes in gill: atp1a2a, g6pd, Artemov et al.
2017; differentially methylated genes in fillet: g6pd, chchd3a,
Smith et al. 2015). GO analysis showed no significant GO term en-
richment.

Intergenerationally stable methylation
We found that 99.6% of CpG sites (52,729 out of 52,940) were not
differentially methylated across generations in both lines, sug-
gesting the vast majority of sites show stable levels of methyla-
tion across generations. Our power analysis suggests that a small
proportion of sites (<1%) are likely to have been falsely identified
as non-DMCs (Supplementary Figure S4) across all effect size
groups, suggesting the influence of type 2 error on our criterion
for calling stable methylation would only affect a small number
of sites. Based on Pearson’s correlation distance calculated from
the 52,729 CpG sites, most individuals clustered by generation (F1
vs. F2) and by hybrid line (HL vs. KL) (Figure 4A).

We found no significant enrichment of the stable sites in any
of the genomic contexts when compared to the null distribution
of all filtered sites (promoters: G¼ 4.53� 10�4, df ¼ 1, P¼ 0.983;
exons: G¼ 4.94� 10�5, df ¼ 1, P¼ 0.994; introns: G¼ 3.49� 10�5, df
¼ 1, P¼ 0.995; intergenic regions: G¼ 1.01� 10�4, P¼ 0.992;
Figure 5A). Among the stable CpG sites, we found 6,462, 28,005,
and 18,262 CpG sites that were constitutively hypermethylated,
constitutively hypomethylated, and variable, respectively. When
analyzing the genomic context of CpGs from these three

Figure 3 (A) Heatmap of methylation levels of the 891 DMCs between marine and freshwater ecotypes from the parental generation. See legend for
colors identifying habitat and line on the top x-axis. Columns represent individual fish. Each row represents one of the DMCs, which are clustered on
the left y-axis based on the similarities of the methylation patterns among individuals. Darker red indicates greater methylation in that individual
while darker blue indicates lower methylation for that DMC. Individual dendrogram positions are based on overall methylation patterns across the 891
DMCs. (B) The proportion of genomic features (promoters, exons, introns or intergenic regions) in the 891 DMCs. The outer ring describes the locations
of DMCs while the inner ring describes the features of null distribution of all filtered CpGs. Asterisks denote significant differences between the features
of DMCs versus the features of the null distribution using a G-test at P< 0.01.
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categories, we found a significantly biased genomic distribution,
with constitutively hypermethylated sites enriched within exons
(G¼ 29.3, df ¼ 1, P¼ 6.33� 10�8; Figure 5B), constitutively hypo-
methylated sites enriched within promoters (G¼ 17.8, df ¼ 1,
P¼ 2.42� 10�5; Figure 5C), and variable sites enriched within
introns (G¼ 9.36, df ¼ 1, P¼ 2.22� 10�3; Figure 5D) when com-
pared to the null distribution of all filtered CpGs. We found that
94.8% (845 out of 891) of the DMCs between ecotypes were also
identified as stable sites, a percentage not significantly different
than the percentage of stable sites among all filtered sites
(G¼ 0.171, df ¼ 1, P¼ 0.679), suggesting that most sites involved
in methylation divergence between ecotypes can be stable across

generations, and could therefore be plausibly associated with ad-
aptation to different habitats.

To calculate the genetic heritability of stable sites, we first
identified 92,983 SNPs, and then filtered this dataset down to 350
SNPs that (1) had less than 10% missing data across all F1 and F2
individuals, (2) were not located on the sex chromosome, and (3)
had low to no LD with each other. Six of these SNPs showed
highly significant associations with the methylation values of F1
and F2 individuals (Q< 0.05), and 16,514 out of the 52,729 inter-
generationally stable CpG sites had h2 > 0 (Figure 4B). We also
retained 3,007 and 4,203 SNPs after filtering the SNPs by 30% and
50% missing data, respectively, with 22 and 28 of these SNPs

Figure 4 (A) Dendrogram of methylation levels for all fish in F1 and F2 generations. The y-axis is the Pearson’s correlation distance after hierarchical
clustering of the percent methylation levels of the 52,729 intergenerationally stable CpG sites. F1 fish are shown in blue, and F2 fish are shown in black.
(B) Manhattan plot showing the �logP of correlations between each single nucleotide polymorphism (SNPs) (columns) and overall methylation values
of the 52,729 intergenerationally stable CpG sites when filtering SNPs using a 10% missing data cut-off. Black points are statistically significant SNPs
(Q< 0.05) after adjusting for multiple testing using the Benjamini-Hochberg’s false discovery rate method. SNPs (n¼ 43) from unassembled scaffolds are
without significant hits, and thus are not shown here. SNPs and CpG sites from the sex chromosome are excluded from the analyses.

Figure 5 The proportion of genomic features (promoters, exons, introns or intergenic regions) in intergenerationally stable CpGs compared with null
distribution of all filtered CpGs in (A) all intergenerationally stable sites, (B) constitutively hypermethylated sites, (C) constitutively hypomethylated
sites, and (D) variable sites. Outer rings describe the locations of CpGs in each category; inner rings describe the features of null distribution of all
filtered CpGs. Asterisks denote significant differences between the features of CpGs in each category versus the features of the null distribution using a
G-test at P< 0.01.
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showing highly significant associations with the methylation val-
ues of F1 and F2 individuals, and 16,498 and 21,055 intergenera-
tionally stable CpG sites having h2 > 0 (Supplementary Figure S5).
Finally, the kinship matrix estimated the narrow-sense heritabil-
ity for CpG methylation levels at (on average) 24%, 32%, and 35%
using the 350, 3,007, and 4,203 post-filtering SNPs, respectively.

Identification of meQTLs associated with
methylation divergence between marine and
freshwater ecotypes
When analyzing meQTLs within each hybrid line, we identified
968 and 531 significant SNP-CpG pairs in HL_F2 and KL_F2 fish,
respectively, corresponding to 335 unique SNPs and 75 unique
CpG sites in HL_F2, and 201 unique SNPs and 72 unique CpG sites
in KL_F2. We found that 85.0% (HL_F2: 823 of 968) and 94.4%
(KL_F2: 501 out of 531) of the SNP-CpG pairs were also identified
as significant SNP-CpG pairs when using R/qtl, and the P-value
distributions showed no evidence of test statistic inflation
(Supplementary Figure S6). A two-dimensional plot of meQTLs
indicates that each SNP could regulate multiple CpG sites located
across the genome (trans-meQTLs indicated as gray dots show
large scatter around the diagonal line of cis-meQTLs, indicated as
black dots; Supplementary Figure S7). We found meQTLs dis-
played significantly more trans- than cis-meQTLs (HL_F2: 965
trans- vs 3 cis-meQTLs, G¼ 1.30� 103, df ¼ 1, P< 2.20� 10�16;
KL_F2: 527 trans- vs 4 cis-meQTLs, G¼ 689, df ¼ 1,
P< 2.20� 10�16), with no significant GO term enrichment for
genes annotated with unique SNPs within significant meQTLs in
either line. There was relatively low LD between SNPs and CpGs
with significant cis associations (mean r2 ¼ 0.287). We also found
no overlap between CpGs associated with meQTLs and the DMCs
identified between ecotypes in HL_F2, likely due to the small
number of CpG sites associated with significant meQTLs.
Alternatively, this could be due to the small amount (ranging
from 24% to 35%) of methylation variation explained by additive
genetic variation, suggesting that a significant proportion of CpGs
are likely to be autonomous from additive genetic variation, and
thus not detectable in a meQTL analysis. We found two CpGs as-
sociated with nine trans-meQTLs that overlapped with DMCs in
KL_F2, with all nine SNP-CpG pairs verified by R/qtl. Although the
two CpGs did not localize within any genes, they were in close ge-
nomic proximity (�15 kb) to zinc finger E-box binding homeobox
1 b (zeb1b, Ensembl Gene ID ENSGACG00000001002) and centro-
somal protein 76 (cep76, Ensembl Gene ID ENSGACG0000000
3686). The nine trans-meQTLs were annotated with four genes
(Supplementary Table S2).

To assess the co-occurrence of meQTLs and eQTLs, we com-
pared locations of meQTLs identified in our study to eQTL
hotspots in Ishikawa et al. (2017). We found that an overall of
9.14% (HL_F2: 24 out of 335; KL_F2: 25 out of 201) of the unique
SNPs overlapped with eQTL locations across HL_F2 and KL_F2
samples. This proportion does not suggest an excess of meQTL-
eQTL overlap relative to null expectations that are built from all
input SNPs for meQTL analyses (G¼ 0.245, df ¼ 1, P¼ 0.621).
Finally, to investigate whether meQTLs might be associated with
divergent selection in marine versus freshwater habitats, we ex-
amined whether the unique SNPs within meQTLs overlapped
with genomic regions of high differentiation between the two
stickleback ecotypes. We found a total of six (four in HL_F2 and
two in KL_F2) unique SNPs within high differentiation regions,
corresponding to 14 (11 and 3 in HL_F2 and KL_F2, respectively)
trans-acting SNP-CpG pairs. The effect sizes (beta) of meQTLs
ranged from 0.105 to 0.406 (median ¼ 0.161). The six SNPs were

annotated with four genes (Supplementary Table S3), which
encode proteins likely to be relevant to marine-freshwater diver-
gence in stickleback (e.g. sensing changes in osmoregulatory
environment; see below).

Discussion
The role of DNA methylation in fundamental ecological and evo-
lutionary processes has received increased attention in recent
years (Metzger and Schulte 2016; Verhoeven et al. 2016; Hu and
Barrett 2017). However, the extent to which variation in DNA
methylation is stably transmitted across generations, and the
prevalence of cis- and/or trans-acting genetic variants in contrib-
uting to methylome evolution remain poorly understood, particu-
larly in natural animal populations. We used a quantitative,
single-base-resolution technique (RRBS) to measure DNA methyl-
ation from fin tissue across two generations in threespine
stickleback sampled from two distinct environment types. A large
majority (99.6%) of CpG sites were identified as being intergenera-
tionally stable, as indicated by consistent methylation levels
across F1 and F2 generations in two hybrid lines. As a conse-
quence, of the subset of CpG sites that also showed significant
divergence between marine and freshwater ecotypes in the
grandparental generation, a large majority (94.8%) could be clas-
sified as being stable across generations. Epigenetic variation was
associated with genetic variation to some extent, with a narrow-
sense heritability of these stable sites ranging from 24% to 35%.
These values are consistent with recent epigenome-wide associa-
tion studies that have found that genetic variation can explain an
average of 7–34% of methylation variation in animals (McRae
et al. 2014; Orozco et al. 2015; Taudt et al. 2016; Carja et al. 2017).
We found distinct patterns of genomic context between three
categories of stable CpG sites: constitutively hypomethylated and
hypermethylated sites were predominantly located within
promoters and exons, respectively, whereas variable sites were
enriched within introns. We also identified meQTLs in marine-
freshwater F2 hybrid lines, with some meQTLs overlapping with
genomic regions of high differentiation between marine and
freshwater ecotypes in stickleback. Finally, we identified the ge-
netic architecture underlying two DMCs between ecotypes that
were also shown to have intergenerational stability in their meth-
ylation levels. Overall, our study provides the first investigation
of the genetic basis of stable epigenetic variation in stickleback
and identifies methylation differences that could be associated
with local adaptation in marine and freshwater ecotypes.

Methylation divergence between ecotypes
We found a similar number of differential methylation sites (891
DMCs) between marine and freshwater ecotypes of threespine
stickleback to a recent study (737 DMCs in Smith et al. 2015).
While we did not find any significantly enriched GO terms, some
of these DMCs were annotated with genes that are likely to con-
tribute to adaptation to marine and freshwater environments.
For example, we found DMCs overlapped with genes related to
osmoregulation (ion channel activity: trpc1, RYR3, gria3b, and
kcnq3), metabolic process (lipid and fatty acid metabolism: elovl6l,
scap; glucose and carbohydrate metabolism: g6pd), immune
response (hemopoiesis: kalrna; myeloid cell and neutrophil differ-
entiation: satb1b; erythrocyte maturation: klf3), and catalytic ac-
tivity (alpl, phlpp1, and sdr39u1). Because the osmotic
environments, parasite communities, and migratory life cycles of
marine and freshwater ecotypes differ (Smith et al. 2015; Huang
et al. 2016; Artemov et al. 2017; Ishikawa et al. 2017), the
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differential methylation of these genes suggests that the methyl-
ome could be associated with ecologically important phenotypic
differentiation between ecotypes.

The genetic basis and functions of
intergenerationally stable epigenetic variation
To understand how methylation divergence between ecotypes
might be involved in the process of local adaptation, we next ex-
plored the stability of epigenetic variation across generations.
While the approach of using experimental crosses to explore sta-
ble epigenetic variation and its underlying genetic basis has been
widely applied in plant studies (e.g. Johannes et al. 2009; Roux
et al. 2011; Li et al. 2014), few studies have used this type of experi-
mental design in non-model animal populations (but see Nätt
et al. 2012; Weyrich et al. 2016, 2018). Examination of the genetic
basis of methylation sites is valuable for exploring the mecha-
nisms that facilitate animal responses to novel environments,
and for predicting the likelihood that populations will be able to
evolve in response to environmental change (O’Dea et al. 2016).
We identified 52,729 CpG sites that were not differentially meth-
ylated between F1 and F2 generations in both HL and KL hybrid
lines (99.6% of all CpG sites). Similar to Heckwolf et al. (2020), this
suggests that the majority of our analyzed CpG sites have stable
levels of methylation across generations. These CpG sites are not
necessarily heritable; it is possible that methylation levels are in-
duced to similar levels across generations due to exposure to a
similar environment. However, it is also possible that some
methylation levels are heritable, either due to control by genetic
variation (see below) or resistance to epigenetic reprogramming
between generations. This pattern may also be due to non-global
DNA methylation reprogramming during embryogenesis in fish,
which can provide greater opportunity for transmitting DNA
methylation from parents to the offspring (Schmitz et al. 2011;
Skvortsova et al. 2018).

When assessing the contribution of the intergenerationally
stable CpG sites to evolutionary processes, we found significant
enrichment of constitutively hypomethylated CpG sites within
promoters, and significant enrichment of constitutively hyper-
methylated CpG sites within gene bodies, suggesting that stable
DNA methylation may directly regulate gene expression and fa-
cilitate alternative splicing, and thus contribute to genomic evo-
lution by providing access to alternative promoter sites and
increasing the number of transcriptional opportunities and phe-
notypes (Roberts and Gavery 2012). Consequently, mutations
impacting intergenerationally stable methylation could acceler-
ate the exploration of phenotypic space, and therefore allow pop-
ulations to adapt to the changing environments more efficiently
(Klironomos et al. 2013). Furthermore, the distinct distribution
patterns of hyper- and hypo-methylated CpG sites are consistent
with whole genome assessments of methylation in other fish spe-
cies and in model animals and plants (Feng et al. 2010; Zemach
et al. 2010; Long et al. 2013; Shao et al. 2014), suggesting a con-
served role for constitutive hyper- and hypomethylation in a
wide range of species.

We found a large proportion (�95%) of DMCs between marine
and freshwater ecotypes in the grandparental generation also
showed intergenerational stability in methylation levels, suggest-
ing that the genes associated with these DMCs could play a role
in facilitating adaptation to different environments. Theoretical
work has suggested that environmentally responsive epigenetic
changes that can be transmitted to the next generation might be
beneficial when the effects of epigenetic variation increase both

the parental and offspring fitness with low cost (Herman et al.
2014). As the functions of several DMC-associated genes identi-
fied here are relevant to responses to changes in aquatic environ-
ments such as salinity, parasites, and diet, our findings provide
evidence for a possible adaptative mechanism in threespine
stickleback whereby advantageous epigenetic changes that have
been triggered by environmental stimulus are transmitted across
generations.

There is substantial interest in biomedical and agricultural
fields to understand the contribution of genetic variation to pop-
ulation epigenomic variation, with a number of recent genetic
studies having quantified the heritable basis of population epige-
nomic variation in model animals (Taudt et al. 2016). When ap-
plying a stringent missing data cut-off (10%), we found a
reasonably high average heritability of 24% for methylation levels
across F1 and F2 generations. When applying more relaxed miss-
ing data cut-offs (30% and 50%), we find heritability estimates of
32% and 35%. In addition, we found that 31% to 40% of stable
CpG sites had a measurable genetic component (narrow-sense
heritability h2 > 0), a percentage similar to previous findings in
model species (Taudt et al. 2016). Together, our results suggest a
plurality of mechanisms are likely contributing to stable levels of
methylation variation across generations, including genetic con-
trol, epimutation, and exposure to past or current environmental
factors.

Contribution of meQTL to methylation divergence
between ecotypes
We characterized meQTLs in the F2 generation of two marine-
freshwater hybrid lines, and detected two CpGs associated with
significant meQTLs that overlapped with DMCs between marine
and freshwater ecotypes, both in the KL_F2 line. The two CpGs
were close to zeb1b and cep76, which are key genes involved in de-
velopmental processes. Zeb1b is a transcriptional factor regulat-
ing the expression of interleukin 2 (Williams et al. 1991), which is a
key cytokine gene involved in adaptive immune response in tele-
ost fish (Zou and Secombes 2016). A recent study has also found
that both interleukin 2 and genes involved in its signaling pathway
are differentially expressed in kidney tissue between stickleback
populations with different parasite prevalence (Fuess et al. 2020),
suggesting a potential role for interleukin 2 and its regulators in
facilitating stickleback responses to distinct parasite loads be-
tween marine and freshwater environments (Scharsack et al.
2016; Lugert et al. 2017). Cep76 is an important paralog of CC2D2A,
which is a gene associated with development of the primary cilia,
and is relevant to morphological differences between Pacific lam-
prey populations with distinct migratory behaviors (Hess et al.
2014). Because the morphology between marine and freshwater
stickleback ecotypes differs significantly (Jones et al. 2012), the
overlap between meQTL-associated CpGs and ecotype-DMCs sug-
gests that these loci may be under divergent selection in marine
versus freshwater habitats.

Although methylation variation between marine and freshwa-
ter ecotypes can be caused by both cis- and trans-regulatory
changes, we found only trans-meQTLs within genomic regions of
high differentiation between ecotypes. This is interesting because
we expected to detect a bias toward cis-meQTLs due to the close
genomic proximity of the SNPs and CpGs from the same RRBS
fragments. Moreover, a number of recent studies have shown
greater contribution of cis-regulatory than trans-regulatory ge-
netic variants in gene expression divergence in the gill, brain and
liver tissues of stickleback (Ishikawa et al. 2017; Pritchard et al.

10 | GENETICS, 2021, Vol. 217, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/217/1/1/6094427 by guest on 12 M

arch 2021



2017; Verta and Jones 2019). However, predominantly trans-regu-
latory changes in gene expression have also been found in the
tooth plate of stickleback and Drosophila (McManus et al. 2010;
Osada et al. 2017; Hart et al. 2018). These contrasting results have
been attributed to a number of factors such as inter- versus
intra-specific comparison and tissue heterogeneity, where trans-
regulatory effects dominate in intraspecific comparisons and in
more heterogeneous tissue (Hart et al. 2018). Our findings fit with
these explanations in that we conducted an intraspecific compar-
ison using heterogenous caudal fin tissue that consists of epider-
mis, osteoblasts, dermal fibroblasts, and vascular endothelium
(Tu and Johnson 2011).

Although selection may initially favor master regulator genes
that regulate distant genes through trans-acting mechanisms
during rapid adaptation, it has been suggested that different evo-
lutionary scenarios and selective contexts may alternatively fa-
vor trans- and cis-acting mechanisms during intraspecific
adaptive divergence (Cooper et al. 2003; Lemos et al. 2008; Stern
and Orgogozo 2009; Hart et al. 2018). In the case of marine stickle-
back invading freshwater environments, local adaptation must
often occur in the presence of ongoing gene flow (Nelson and
Cresko 2018). This scenario may initially favor trans-acting mech-
anisms that are less susceptible to being eroded through recom-
bination. However, as the population reaches later stages of
adaptation to the local environment, the advantage of responses
mediated by trans-regulatory genes may shift to favor cis-regula-
tory mechanisms, where co-evolved mutations are more closely
linked to each other and the genes they regulate (Verta and Jones
2019).

Our functional analysis identified multiple genes associated
with meQTLs that are located in genomic regions that have been
shown to have significant differentiation between marine and
freshwater populations, and could therefore be relevant for local
adaptation (Hohenlohe et al. 2010; Jones et al. 2012; Terekhanova
et al. 2014) (Supplementary Table S3). For example, we found
genes annotated with osmosis and electrolyte transport (KCNB2),
and skeletal and fibroblast growth (Slco5a1a), which have also
been found in previous stickleback studies investigating differen-
tial gene expression or methylation in gill or fillet tissue between
marine and freshwater ecotypes (Smith et al. 2015; Artemov et al.
2017). These results suggest that this collection of genes might be
important for facilitating adaptation to these divergent environ-
ments in stickleback, although the direction of causality between
DNA methylation variation and gene expression remains elusive.
Interestingly, it has been shown that genomic regions that are
not significantly differentiated between ecotypes can still play an
important role in adaptation to novel aquatic environments in
stickleback (DeFaveri et al. 2011; Leinonen et al. 2012; Ellis et al.
2015; Erickson et al. 2016; Ferchaud and Hansen 2016). Our find-
ings suggest that the genetic architecture underlying methylation
divergence and physiological adaptation to different aquatic
environments in stickleback is complicated and could include
SNPs from genomic regions that experience either neutral or se-
lective processes.

Limitations
Our study has a number of caveats that should be noted. First, an
intrinsic problem of in vivo studies using next-generation
sequencing techniques such as RRBS is the heterogeneity of ana-
lyzed tissues. Fin tissues consist of many different cell types in-
cluding epidermis, osteoblasts, dermal fibroblasts, and vascular
endothelium (Tu and Johnson 2011). Therefore, various

proportions of different cell types could introduce biases in meas-
ures of methylation levels (Kratochwil and Meyer 2015). In addi-
tion, we only used fin tissues from a single developmental stage
of sticklebacks, whereas methylation and gene expression pat-
terns are known to be development-related and tissue-specific
(Wang et al. 2009; Feil and Fraga 2012). Thus, overlap between
the locations of meQTLs identified using fin tissue in this study
and the eQTLs identified using brain tissue in Ishikawa et al.
(2017) should be interpreted with caution. Further studies
extending our work to a broader range of tissues and develop-
mental stages will be helpful for a more comprehensive charac-
terization of methylation variation, and its role in gene
regulation and development.

Second, the reduced representation genome sequencing
method used here can only cover a small proportion of all possi-
ble methylation patterns in these populations. Thus, we are inev-
itably missing a large number of stable CpG sites and SNPs
located outside of the regions of the genome represented here. In
addition, because the accuracy of SNP calls from bisulfite se-
quencing data can be affected by the conversion rate of unme-
thylated cytosines (Barturen et al. 2014), the SNPs identified in
our study could be different than those that would be obtained
using a sequencing method that produces independent SNP data
(e.g. restriction-site associated DNA sequencing, RAD-seq; Baird
et al. 2008). Furthermore, while we mainly focused methylation
patterns in promoters and gene bodies, other regulatory elements
such as enhancers and transposons, although less well anno-
tated in stickleback, are also important drivers of regulatory and
phenotypic evolution (Wittkopp and Kalay 2012) and thus war-
rant further research.

Third, the number of individuals and families used in our
study is limited. Thus, including additional samples from more
families would provide additional information on family-level
variation, as well as more loci associated with methylation varia-
tion that would increase the power of our heritability and meQTL
analyses. In addition, we generated marine-freshwater F1 fami-
lies by crossing marine females and freshwater males, and recent
studies in zebrafish have suggested that epigenetic patterns at
early developmental stages can often reprogram to reflect the pa-
ternal state (Jiang et al. 2013; Potok et al. 2013). Whether such
reprogramming is common to teleosts remains unclear
(Skvortsova et al. 2018), but additional reciprocal crosses using
marine males and freshwater females, as well as pure crosses
within marine or freshwater populations, would allow a more
comprehensive understanding of parental effects on epigenetic
inheritance (Laporte et al. 2019).

Finally, although we have corrected for the possibility of
falsely interpreting C-to-T and G-to-A SNPs as epigenetic varia-
tion by excluding them from methylation estimates, it is possible
that some SNPs were miscalled. Thus, our results provide a nec-
essarily coarse map of the genetic architecture underlying stable
methylation and methylation divergence between marine and
freshwater stickleback populations. A wider investigation of regu-
latory elements in combination with genome-wide sequencing of
chromatin modifications (e.g. chromatin immunoprecipitation
followed by sequencing (ChIP-seq); Park 2009; Furey 2012) and
whole-genome resequencing (e.g. Le Luyer et al. 2017) would
provide a more comprehensive and precise understanding of the
relationship between genetics and DNA methylation, and the role
that epigenetic responses may play in facilitating evolutionary
change.
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Conclusions
Here, we provide the first insights into the genetic architecture of
DNA methylation in threespine stickleback. Our genome-wide
methylation data reveals that the vast majority of CpG sites have
stable methylation levels across generations, including the sites
that show significant divergence in methylation levels between
marine and freshwater ecotypes. Some of these sites show evi-
dence of genetic control, while others are likely to be autonomous
from genetic variation. We also explored the genomic distribution
of methylation in marine-freshwater hybrid populations and
found meQTLs that overlap with previously identified genomic
regions of high differentiation between marine and freshwater
populations. In addition, our data demonstrates different contri-
butions of cis- and trans-meQTLs to methylome divergence in
stickleback. Our study adds to the few studies using non-model,
outbred vertebrates to test for the genetic basis of intergenera-
tionally stable methylation and methylation divergence between
ecotypes. Our results suggest that methylation could play an im-
portant role in facilitating phenotypic plasticity over the short-
term, as well as population persistence and adaptation over lon-
ger evolutionary time scales.
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